85 resultados para subgrain coalescence
Resumo:
Fatigue tests were performed using a purpose designed triangular shaped specimen to investigate the initiation and propagation of short fatigue cracks in a weld metal. It was observed that short fatigue cracks evolved from slip bands and were predominantly within ferrite grains. As the test progressed, the short crack density increased with minor changes in crack length. The growth of short cracks, in the early stage resulted mainly from coalescence with other existing cracks. The mechanism of short crack behaviour is discussed.
Resumo:
The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.
Resumo:
A critical review on the mechanism and models on the bubble-to-slug transition of two-phase gas-liquid flows are presented in the present paper. It is shown that the most possible mechanism controlled the bubble-to-slug transition is the bubble coalescence. Focusing on the bubble-to-slug transition for the low-Re two-phase flow, a simple Monte Carlo method is used to simulate the influence of the initial bubble size on the bubble-to-slug transition. Some secondary factors, such as the liquid viscosity, the surface tension, and the relative slip between the two phases, are ignored in the present study. It is found that the locus of the dimensionless rate of collision is a universal curve. Based on this curve, it is determined that the bubble initial size can affect the phase distribution and flow pattern when its dimensionless value is in the range from 0.03 to 0.4. A simple relationship between the critical void fraction and the initial bubble size is proposed, which agrees very well with the experimental data.
Resumo:
The experimental and theoretical investigations into the head-on collision between a landing droplet with another one resting on the PDMS substrate were addressed in this talk. The colliding process of the two droplets was recorded with highspeed camera. Four different responses after collision were observed in our experiments: complete rebound, coalescence, partial rebound with conglutination, and coalescence accompanied by conglutination. The contact time between the two colliding droplets was found to be in the range of 10-20 milliseconds. For the complete bouncing case, Hertz contact model was applied to estimate the contact time of the binary head-on colliding droplets with both the droplets considered as elastic bodies. The estimated contact time was in good agreement with the experimental result.
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Resumo:
Experiments were conducted on copper subjected to High Pressure Torsion to investigate the evolution of microstructure and microhardness with shear strain, gamma. Observations have been carried out in the longitudinal section for a proper demonstration of the structure morphology. An elongated dislocation cell/subgrain structure was observed at relatively low strain level. With increasing strain, the elongated subgrains transformed into elongated grains and finally into equiaxed grains with high angle grain boundaries. Measurements showed the hardness increases with increasing gamma then tends to saturations when gamma >5. The variation tendency of microhardness with gamma can be simulated by Voce-type equation.
Resumo:
稻属(OrvzaL.)是禾本科(Poaceae)中的重要植物类群,包含20多个野生种和两个栽培种,共有十个基因组类型,即A,B,C,E,F,G,BC,CD,HJ和HK,蕴藏了极为丰富的遗传资源,是水稻遗传改良的重要基因库。考虑到该属现存物种中的多倍体都是由二倍体杂交起源的,因此,弄清二倍体基因组之间的进化关系对于正确理解整个稻属的进化历史至关重要,同时也为稻属及其近缘类群的进化生物学、比较基因组学和功能基因学研究等提供了一个重要的工作基础。迄今,对稻属各基因组之间的系统发育关系还没有一致的结论,特别是对A、B和C基因组三者之间的关系,以及稻属基部类群的归属问题还存在争议。本研究选取来自不同二倍体基因组的6个稻属物种为研究对象,以近缘属Leersia中的L,tisserantti作外类群,通过对基因组水平的多基因序列数据的详尽分析,探讨了稻属二倍体基因组之间的亲缘关系问题,基因树与基因树之间冲突的机理,以及利用基因组水平的多基因序列做系统发育分析的方法,主要研究结果如下。 利用已完成的水稻两亚种(O.sativaL.ssp. indica和O.sativaL.ssp.japonica)的全基因组序列,筛选并扩增出遍布核基因组12条染色体的142个单拷贝核基因片段。通过对全部基因位点的合并分析,我们得到了一棵有完全分辨并得到显著统计支持的系统树。分别提取各基因的外显子区、内含子区和第三密码子进行合并建树时发现,除了合并外显子区的MP分析以外,所得系统树的树形均不变,说明这棵树基本上不会因为选取基因组不同区域或碱基位点而改变,尽管不同区域或碱基位点受到不同的选择约束力。以基因为单位进行放回式抽样也强烈支持合并建树的分析结果,表明多基因合并序列的系统发育估计并没有受到少数特殊基因的支配。为了考察基因组内物种取样对建树的影响,我们增加了2个A基因组物种以及C基因组的另外两个物种,随机选取其中的62个基因位点进行扩增和测序(增加的O.sativa的序列来自BGI-RIS数据库)。将全部II个物种62个基因位点的序列合并建树分析,得到基因组之间的进化关系均未改变。我们进一步评估了合并数据的系统误差,结果发现,合并数据的系统发育重建也未受到系统误差的影响。综上所述,本研究通过系统发育基因组学方法所得到的系统树反映了类群真实的进化关系。 为了深入探讨以往研究中出现相互矛盾的系统发育关系的原因,我们对142个基因位点分别做了单独的建树分析,并用系统发育网络方法分析了数据中基因之间系统发育信息矛盾的集中位置及其矛盾程度。基于单基因的建树分析及系统误差分析,我们排除了随机误差和系统误差直接造成基因之间信息冲突的可能性。基于溯祖理论( Coalescence theory)的进一步分析表明,稻属进化过程中发生了两次世代间隔较短的连续分化事件,由于祖先居群较大引起基因的谱系分选,进而使得在利用现有物种基因序列来重建这些分化事件时基因树不能正确反映物种树,且呈现出基因组水平的基因树冲突现象。这两次间隔较短的连续分化事件分别对应了稻属中两次物种快速分化过程,整个稻属基因组的多样性几乎都是在这两次物种快速分化过程中形成的。随机抽样分析表明,需要大量的分子序列数据才能正确分辨稻属二倍体基因组的系统发育关系(若取95%的概率,则至少需要120个基因或50kb的随机碱基位点)。本研究用基因组水平的多基因合并数据克服了谱系分选对构建系统树所带来的“噪音”,在存在广泛单基因系统发育信息矛盾的前提下获得了对物种树的正确估计,这充分证明系统发育基因组学方法在解决快速分化类群的进化关系问题中有着巨大潜力和广阔的应用前景。 基于本文所采用的142个核基因,我们初步探讨了利用多基因序列数据构建系统树时如何进行模型选择和插入缺失编码等问题,并评估了数据缺失对基因组水平系统发育重建的影响。结果表明,对合并数据而言,混合模型比单一模型能更好的拟合数据的进化模式;找到合并数据中异质性的根源并做出适当的数据分割是成功运用混合模型的关键;某些模型成分在提高模型对数据的适合度上发挥着重要作用,尤其要考虑位点之间以及谱系之间的突变速率异质性。我们认为,在设置模型时,最复杂的不一定是最好的,把握数据中最重要的进化特征远比简单的增加模型的复杂度重要。插入缺失的编码分析表明,编码后显著增加了对A基因组和B基因组聚为一枝的支持,但对稻属基部类群的分辨状况改善不明显。另外,我们通过去除数据缺失比例较大的类群来降低数据缺 失对系统发育推断的影响,结果所得的系统发育关系不变,支持率也仅有极微小的变化,说明基因组水平的多基因数据由于具有丰富的系统发育信息,因而对数据缺失具有很好的缓冲能力。
Resumo:
A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.
Resumo:
On the metalorganic chemical vapour deposition growth of AlN, by adjusting H-2+N-2 mixture gas components, we can gradually control island dimension. During the Volmer - Weber growth, the 2-dimensional coalescence of the islands induces an intrinsic tensile stress. Then, this process can control the in-plane stress: with the N-2 content increasing from 0 to 3 slm, the in-plane stress gradually changes from 1.5 GPa tensile stress to - 1.2GPa compressive stress. Especially, with the 0.5 slm N-2 + 2.5 slm H-2 mixture gas, the in-plane stress is only 0.1 GPa, which is close to the complete relaxation state. Under this condition, this sample has good crystal and optical qualities.
Resumo:
Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.
Resumo:
In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.
Resumo:
From a single process, GaN layers were laterally overgrown on maskless stripe-patterned (111) silicon-on-insulator (SOI) substrates by metalorganic chemical vapor deposition. The influence of stress on the behavior of dislocations at the coalescence during growth was observed using transmission electron microscopy (TEM). Improvement of the crystallin equality of the GaN layer was demonstrated by TEM and micro-Raman spectroscopy. Furthermore, the benefits of SOI substrates for GaN growth are also discussed.
Resumo:
We have investigated the optical properties of AlGaN grown on sapphire. It is found that two main luminescence peaks occur in the cathodoluminescence (CL) spectra of AlGaN films, and their energy separation increases with the increase of Al source flux during the growth. Spatially resolved CL investigations have shown that the line splitting is a result of variation of AlN mole fraction within the layer. The Al composition varies in both lateral and vertical direction. It is suggested that the difference in the surface mobility of Al and Ga atoms, especially, its strong influence on the initial island coalescence process and the formation of island-like regions on the uneven film surface, is responsible for the Al composition inhomogeneity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The defect evolution and its correlation with electrical properties of GaN films grown by metalorganic chemical vapor deposition are investigated. It is found that the dislocation density decreases gradually during the growth process, and the dislocation reduction rate in the island coalescence process is especially rapid. The changes in electron mobility of GaN with the increase of growth time are mainly dependent on the dislocations acting as scattering centers. Furthermore, the variation of carrier concentration in GaN may be related with the point defects and their clusters. The quality of GaN could be improved by suitably increasing the film thickness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The in situ optical reflectivity measurements are employed to monitor the GaN epilayer growth process above low-temperature AlN buffer layer on c-plane sapphire substrate by metalorganic chemical vapor deposition. It is found that the lateral growth of GaN islands and their coalescence is promoted in the initial growth stage if the AlN buffer layer is treated with a long annealing time and has an optimal thickness: As confirmed by atomic force microscopy observations, the quality of GaN epilayers is closely dependent on the surface morphology of AlN buffer layer, especially the grain size and nuclei density after the annealing treatment. (C) 2004 American Institute of Physics.