77 resultados para static structure factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure, spin splitting energies, and g factors of paramagnetic In1-xMnxAs nanowires under magnetic and electric fields are investigated theoretically including the sp-d exchange interaction between the carriers and the magnetic ion. We find that the effective g factor changes dramatically with the magnetic field. The spin splitting due to the sp-d exchange interaction counteracts the Zeeman spin splitting. The effective g factor can be tuned to zero by the external magnetic field. There is also spin splitting under an electric field due to the Rashba spin-orbit coupling which is a relativistic effect. The spin-degenerated bands split at nonzero k(z) (k(z) is the wave vector in the wire direction), and the spin-splitting bands cross at k(z) = 0, whose k(z)-positive part and negative part are symmetrical. A proper magnetic field makes the k(z)-positive part and negative part of the bands asymmetrical, and the bands cross at nonzero k(z). In the absence of magnetic field, the electron Rashba coefficient increases almost linearly with the electric field, while the hole Rashba coefficient increases at first and then decreases as the electric field increases. The hole Rashba coefficient can be tuned to zero by the electric field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k center dot p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor optical amplifiers (SOAs) with n-type modulation-doped multiple quantum well structure have been investigated. The shortened carrier lifetime is derived from the PL spectrum and electrical modulation frequency response measurement. The carrier lifetime in semiconductor optical amplifiers with any n-type-2-modulated doping multiple quantum well structure is less than 60% of that in the undoped partner. The shortest measured carrier lifetime of 236 ps in the MD-MQW SOA with sheet carrier density of 3 x 10(12) cm(-2) was only 38% of that in the undoped MQW SOA, which can increase the wavelength conversion efficiency via four wave mixing by a factor of about 7 and switching speed via XGM and XPM applications by a factor of 2.63.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R >= 3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Delta(so)| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shape dependence of electronic structure, electron g factors in the presence of the external magnetic field of InSb quantum ellipsoids are investigated in the framework of eight-band effective-mass approximation. It is found that as the increasing aspect ratio e, the electron states with P character split into three doublets for the different physical interaction and the light-hole states with S character come up to the top of valence bands at e = 2.6 in comparison with the heavy-hole states. In the presence of the external magnetic field, the energy splits of electron states are different for their wave function distribution direction, and the hole ground state remain optical active for a suitable aspect ratio. The electron g factors of InSb spheres decrease with increasing radius, and have the value of about two for the smallest radius, about -47.2 for sufficiently larger radius, similar to the bulk material case. Actually, the electron g factors decrease as any one of the three dimensions increase. The more dimensions increase, the more g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimensions. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure, electron and hole g factors and optical properties of CdTe quantum ellipsoids are investigated, in the framework of eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of valence band. When the aspect ratio of the ellipsoid length to diameter (e) changes from smaller than 1 to larger than 1, the linear polarization factors change from negative to positive. The electron g factors of CdTe spheres decrease with increasing radius, and are nearly 2 when the radius is very small. Actually, as some of the three dimensions increase, the electron g factors decrease. More dimensions increase, the g factors decrease. more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The light-hole and heavy-hole g factors of quantum spheres are equal, and change from 0.88 to -1.14 with increasing radius. When e < 1 (e > 1) the light-hole g factor is smaller (larger) than the heavy-hole g factor. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hamiltonian in the framework of eight-band effective-mass approximation of the zinc-blende nanowires and nanorods in the presence of external homogeneous magnetic field is given in the cylindrical coordinate. The electronic structure, optical properties, magnetic energy levels, and g factors of the nanowires and nanorods are calculated. It is found that the electron states consist of many hole-state components, due to the coupling of the conduction band and valence band. For the normal bands which are monotone functions of |k(z)|, long nanorods can be modeled by the nanowires, the energy levels of the nanorods approximately equal the values of the energy band E(k(z)) of the nanowires with the same radius at a special k(z), where k(z) is the wave vector in the wire direction. Due to the coupling of the states, some of the hole energy bands of the nanowires have their highest points at k(z)=0. Especially, the highest hole state of the InSb nanowires is not at the k(z)=0 point. It is an indirect band gap. For these abnormal bands, nanorods can not be modeled by the nanowires. The energy levels of the nanorods show an interesting plait-like pattern. The linear polarization factor is zero, when the aspect ratio L/2R is smaller than 1, and increases as the length increases. The g(z) and g(x) factors as functions of the k(z), radius R and length L are calculated for the wires and rods, respectively. For the wires, the g(z) of the electron ground state increases, and the g(z) of the hole ground state decreases first, then increases with the k(z) increasing. For the rods, the g(z) and g(x) of the electron ground state decrease as the R or the L increases. The g(x) of the hole ground state decreases, the g(z) of the hole ground state increases with the L increasing. The variation of the g(z) of the wires with the k(z) is in agreement with the variation of the g(z) of the rods with the L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We verify that the magnetic suppression of intersubband LO or LA phonon scattering can give rise to a noticeable nonthermal occupation in higher-lying subbands. This is clearly determined by the relative intensity ratio of the interband photoluminescence spectra for the E-2 - HH1 and E-1 - HH1 transitions. The observed phenomenon may provide an effective method to control the intersubband scattering rate, which is a key factor of the so-called quantum cascade lasers. This is helpful for the population inversion between both the subbands in quantum wells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum rods with an ellipsoidal boundary is given after a coordinate transformation. The energies, wave functions, and transition possibilities are obtained as functions of the aspect ratio e with the same method we used on spherical dots. With an overall consideration of both the transition matrix element and the Boltzmann distribution we explained why the polarization factor increases with increasing e and approaches a saturation value, which tallies quite well with the experimental result. When e increases more and more S-z states are mixed into the ground, second, and third states of J(z)=1/2, resulting in an increase of the emission of z polarization. It is just the linear terms of the momentum operator in the hole Hamiltonian that cause the mixing of S and P states in the hole ground state. The effects of the crystal field splitting energy, temperature, and transverse radius to the polarization are also considered. We also calculated the band gap variation with the size and shape of the quantum rods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdS clusters are formed in the pores of a mesoporous zeolite in which the size of the clusters may be adjusted. The size of the clusters increases as the CdS loading is increased. X-ray diffraction investigation shows that the lattice constants of the clusters contract upon increasing size. This contraction is attributed to an increase of the static pressure exercised by the zeolite framework as the clusters grow bigger. Both the excitonic and trapped emission bands are detected and become more intensive upon decreasing size. Three absorption bands appear in the photoluminescence excitation (PLE) spectra and they shift to the blue as cluster size decreases. Based on the effective-mass approximation, the three bands are assigned to the 1S-1S, 1S-1P and 1S-1D transitions, respectively. The size-dependence of the PLE spectra can also be explained. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the electronic structure of porous Si is presented. Three geometries of porous Si (wire with square cross section, pore with square cross section, and pore with circular cross section) along both the [001] and [110] directions are considered. It is found that the confinement geometry affects decisively the ordering of conduction-band states. Due to the quantum confinement effect, there is a mixing between the bulk X and GAMMA states, resulting in finite optical transition matrix elements, but smaller than the usual direct transition matrix elements by a factor of 10(-3). We found that the strengths of optical transitions are sensitive to the geometry of the structure. For (001) porous Si the structure with circular pores has much stronger optical transitions compared to the other two structures and it may play an important role in the observed luminescence. For this structure the energy difference between the direct and the indirect conduction-band minima is very small. Thus it is possible to observe photoluminescence from the indirect minimum at room temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that of (001) porous Si. The optical transitions for all three structures of (110) porous Si tend to be much stronger along the axis than perpendicular to the axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel asymmetric broad waveguide diode laser structure was designed for high power conversion efficiency (PCE). The internal quantum efficiency, the series resistance, and the thermal resistance were theoretically optimized. The series resistance and the thermal resistance were greatly decreased by optimizing the thickness of the P-waveguide and the P-cladding layers. The internal quantum efficiency was increased by introducing a novel strain-compensated GaAs_0.9P_0.1/InGaAs quantum well. Experimentally, a single 1-cm bar with 20% fill factor and 900 μm cavity length was mounted P-side down on a microchannel-cooled heatsink, and a peak PCE of 60% is obtained at 26.3-W continuous wave output power.The results prove that this novel asymmetric waveguide structure design is an efficient approach to improve the PCE.