60 resultados para latent growth curve modeling
Resumo:
ZnO crystals with dimensions of 30 x 38 x 8 turn 3 have been grown by the hydrothermal method using a mixed solution of KOH, LiOH and H2O2. The growing rates for +c(0001) and -c(000 (1) over bar) were 0.17 and 0.09 mm/day, respectively. The crystal color was very light green for +c sector and dark brown for -c sector. For the +c sector, the resistivity at room temperature was 80 0 cm, the carrier concentration was about 10(4)/cm(3), and the mobility was about 100 cm(2)/Vs. The full-width at half-maximum (FWHM) of double axis X-ray rocking curve for the polished Zn face cut from +c sector was 45 arcsec. The photoluminescence (PL) spectrum and the absorption spectrum of +c part of the crystals at room temperature were also reported and discussed in this paper. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Mg0.4Al2.4O4 single crystals with good optical quality were successfully grown by the Czochralski method. The transmission spectrum indicated that the absorption edge of the crystal was at 220nm, while no apparent absorption peaks were found. The X-ray diffraction and DSC curve analysis showed that Mg0.4Al2.4O4 crystal was stable at room temperature. While after annealing in the air and hydrogen atmosphere at about 1200 degrees C,Mg0.4Al2.4O4 decomposed into Al2O3 and (MgO)(0.4)(Al2O3)(x) (0.4 < x < 1.2). The reaction mainly occurred on the crystal surface, barely inside. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work. an alpha-Al2O3:C crystal was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as the raw materials. The optical, optically stimulated luminescence (OSL) properties and dosimetric characteristics of as-grown crystal were investigated. As-grown alpha-Al2O3:C crystal shows strong absorption band at 205, 230 and 256 nm. Three-dimensional thermoluminescence (TL) emission spectrum of the crystal shows a single emission peak at similar to 415 nm. The OSL decay curve can be fitted to two exponentials, the faster component and the slower component. The OSL response of the crystal shows a linear-sublinear-saturation characteristic. As-grown alpha-Al2O3:C crystal shows excellent linearity in the dose range from 5 x 10(-6) to 50 Gy. For doses higher than the saturation dose (100 Gy). the OSL sensitivity decreases as the dose increases. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Growth, nitrogen and carbohydrate metabolism in relation to eutrophication were studied for a submerged plant Potamogeton maackianus, a species common in East Asian shallow lakes. The plants were grown in six NH4+-N concentrations (0.05, 0.50, 1.00, 3.50, 5.00 and 10.00 mg/L) for six days. NH4+-N levels in excess of 0.50 mg/L inhibited the plant growth. The relationships between external NH4+-N availability and total nitrogen (TN), protein-N, free amino acid-N (FAA-N) and NH4+-N in plant tissues, respectively, conformed to a logarithmic model suggesting that a feedback inhibition mechanism may exist for ammonium uptake. The response of starch to NH4+-N was fitted with a negative, logarithmic curve. Detailed analysis revealed that the influx NH4+-N had been efficiently incorporated into organic-N and eventually stored as protein at the expense of starch accumulation. These data suggest that this species may be able to tolerate high levels of ammonium when dissolved oxygen is sufficient.
Resumo:
Tetrahymena thermophila BF5 produce heat by metabolism and movement. Using a TAM air isothermal microcalorimeter, the power-time curves of the metabolism of T thermophila BF5 during growth were obtained and the action on them by the addition of Cr(VI) were studied. The morphological change with Cr(VI) coexisted and biomass change during the process of T thermophila BF5 growth were studied by light microscope. Chromium has been regarded as an essential trace element for life. However, hexavalent chromium is a known carcinogen, mutagen, cytotoxicant and strong oxidizing agent. Cr(VI) of different concentration have different effects on T thermophila BF5 growth with the phenomenon of low dose stimulation (0-3 x 10(-5) mol L-1) and high dose inhibition (3 x 10(-5) to 2.4 x 10(-4) mol L-1). The relationship between the growth rate constant (k) and c is a typical U-shaped curve, which is a characteristic of hormesis. T thermophila BF5 cannot grow at all when the concentration of Cr(VI) is up to 2.4 x 10(-4) mol L-1. The microscopic observations agree well with the results obtained by means of microcalorimetry. And T thermophila BF5 had obviously morphological changes by the addition of Cr(VI). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Compared with other approaches for modeling and predicting, artificial neural networks are more effective in describing complex and non-linear systems. The occurrence of cyanobacterial blooms has been a continuous and serious problem over the past decades in hypereutrophic Lake Dianchi. Yet, the main factor(s) initiating these blooms remain(s) unclear. During 2001-2002 at 40 sampling sites in Lake Dianchi, physicochemical parameters possibly relating to the blooms were measured. Parameters directly or indirectly relating to the cyanobacterial blooms were used as driving factors in a back-propagation network to model the concentration of chlorophyll a. According to sensitivity analysis, chemical oxygen demand was identified as a very significant environmental factor for algal growth in Lake Dianchi.
Resumo:
The effect of ration on growth and energy budget of Chinese longsnout catfish was investigated in a growth trial. Fish of initial body weight of 6.5 g were fed at six ration levels (RLs): starvation, 0.8%, 1.6%, 2.4%, 3.2% of body weight per day, and apparent satiation for 8 weeks. Fish were weighed biweekly to adjust feed amount. The results showed that specific growth rate in wet weight, protein and energy increased logarithmically with increased RLs. The relationship of specific growth rate in wet weight (SGRw, % day(-1)) and RL (%) was a decelerating curve: SGRw=-0.62+3.10 Ln(RL+1). The energy budget equation at satiation was: 100 IE=12.94 FE+5.50(ZE+UE)+40.07 HE+41.49 RE, where IE, FE, (ZE+UE), HE, RE are food energy, faecal energy, excretory energy, heat production and recovered energy respectively. Body composition was slightly but significantly affected by ration size except for protein content. The most efficient ration based on the relationship between RL and feed efficiency ratio in energy (FERe) was 1.8% of body weight per day.
Resumo:
ZnO films were grown at low pressure in a vertical metal-organic vapor deposition (MOCVD) reactor with a rotating disk. The structural and morphological properties of the ZnO films grown at different disk rotation rate (DRR) were investigated. The growth rate increases with the increase of DRR. The ZnO film grown at the DRR of 450 revolutions per minute (rpm) has the lowest X-ray rocking curve full width at half maximum and shows the best crystalline quality and morphology. In addition, the crystalline quality and morphology are improved as the DRR increased but both are degraded when the DRR is higher than 450 rpm. These results can help improve in understanding the rotation effects on the ZnO films grown by MOCVD. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We grow InN epilayers on different interlayers by metal organic vapour phase epitaxy (MOVPE) method, and investigate the effect of interlayer on the properties and growth mode of InN films. Three InN samples were deposited on nitrided sapphire, low-temperature InN (LT-InN) and high-temperature GaN (HT-GaN), respectively. The InN layer grown directly on nitrided sapphire owns the narrowest x-ray diffraction rocking curve (XRC) width of 300 arcsec among the three samples, and demonstrates a two-dimensional (2D) step-flow-like lateral growth mode, which is much different from the three-dimensional (3D) pillar-like growth mode of LT-InN and HT-GaN buffered samples. It seems that mismatch tensile strain is helpful for the lateral epitaxy of InN film, whereas compressive strain promotes the vertical growth of InN films.
Resumo:
Ce-doped Bi12SiO20 (BSO) single crystal was grown on board of the Chinese Spacecraft-Shenzhou No. 3. A cylindrical crystal, 10 mm in diameter and 40 mm in length, was obtained. The morphology of crystals is significantly different for ground- and space-grown portions. The space- and ground-grown crystals have been characterized by Cc concentration distribution, X-ray rocking curve absorption spectrum and micro-Raman spectrum. The results show that the quality of Ce-doped BSO crystal grown in space is more homogeneous and more perfect than that of ground grown one. (C) 2004 Published by Elsevier B.V.
Resumo:
In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE). The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We describe the growth of GaN on Si (111) substrates with a AlGaN/AlN buffer layer by NH3-GSMBE. The influence of the AlN and AlGaN buffer layer thickness on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 nm and 250 nm for AlN and AlGaN layers, respectively. The full width at half maximum of the GaN (0002) peak in the triple-crystal x-ray rocking curve measurement is about 15 arcmin.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The optical constants epsilon(E)=epsilon(1)(E)+iepsilon(2)(E) of unintentionally doped cubic GaN grown on GaAs(001) have been measured at 300 K using spectral ellipsometry in the range of 1.5-5.0 eV. The epsilon(E) spectra display a structure, associated with the critical point at E-0 (direct gap) and some contribution mainly coming from the E-1 critical point. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden-Munoz model dielectric function [M. Munoz et al., J. Appl. Phys. 92, 5878 (2002)]. This model is based on the electronic energy-band structure near critical points plus excitonic and band-to-band Coulomb-enhancement effects at E-0, E-0 + Delta(0) and the E-1, E-1 + Delta(1), doublet. In addition to evaluating the energy of the E-0 critical point, the binding energy (R-1) of the two-dimensional exciton related to the E-1 critical point was estimated using the effective mass/k.p theory. The line, shape of the imaginary part of the cubic-GaN dielectric function shows excitonic effects at room temperature not withstanding that the exciton was not resolved. (C) 2003 American Institute of Physics.