46 resultados para fluence verbale
Resumo:
Single-crystalline spinel (MgAl2O4) specimens were implanted with helium ions of 100 keV at three successively increasing fluences of (0.5, 2.0 and 8.0) x 10(16) ions/cm(2) at room temperature. The specimens were subsequently annealed in vacuum at different temperatures ranging from 500 to 1100 degrees C. Different techniques, including Fourier transformed infrared spectroscopy (FTIR), thermal desorption spectrometry (TDS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to investigate the specimens, It was found that the absorbance peak in the FTIR due to the stretching vibration of the Al-O bond shifts to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with an increase of annealing temperature. The absorbance peak shift has a linear relationship with the fluence increase in the as-implanted state, while it does not have a linear relationship with the fluence increase after the annealing process. Surface deformation occurred in the specimens implanted with fluences of 2.0 and 8.0 x 10(16) ions/cm(2) in the annealing process. The phenomena described above can be attributed to differences in defect formation in the specimens. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
ZnO films were deposited on (100) Si substrate by radio frequency magnetron sputtering. These films were irradiated at room temperature with 308 MeV Xe-ions to a fluence of 1.0 x 10(12), 1.0 x 10(13) or 1.0 x 10(14) Xe/cm(2). Then the samples were investigated using RBS, XRD, FESEM and PL analyses. The obtained experimental results showed that the deposited ZnO films were highly c-axis orientated and of high purity, 308 MeV Xe-ion irradiations could not change the c-axis oriented. The topography and PL properties of the ZnO films varied with increasing the Xe-ion irradiation fluence. For 1.0 x 10(13) or 1.0 x 10(14) Xe/cm(2) irradiated samples, surface cracks were observed. Furthermore, it was found that the 1.0 x 10(14) Xe/cm(2) irradiated sample exhibiting the strongest PL ability. The modification of structure and PL properties induced by 308 MeV Xe-ion irradiations were briefly discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The time of flight mass spectrometric technique was used to determine the initial mean kinetic energy of small fragment ions C-n(+) (n <= 11) produced from C-60 excited by 532 nm nanosecond laser pulses. The measured kinetic energy shows little variation with the fragment mass and the laser fluence in a broad range. Based on the assumption that C-30(+) is produced predominantly by a single electron emission followed by successive C-2 evaporation from hot C-60 in the nanosecond laser field, the formation of small fragments is interpreted as the complete breakup of the unstable C-30(+) cage structure. The interpretation is consistent with the previously observed results.
Resumo:
In the present work, a Cz-Silicon wafer is implanted with helium ions to produce a buried porous layer, and then thermally annealed in a dry oxygen atmosphere to make oxygen transport into the cavities. The formation of the buried oxide layer in the case of internal oxidation (ITOX) of the buried porous layer of cavities in the silicon sample is studied by positron beam annihilation (PBA). The cavities are formed by 15 keV He implantation at a fluence of 2 x 10(16) cm(-2) and followed by thermal annealing at 673 K for 30 min in vacuum. The internal oxidation is carried out at temperatures ranging from 1073 to 1473 K for 2 h in a dry oxygen atmosphere. The layered structures evolved in the silicon are detected by using the PBA and the thicknesses of their layers and nature are also investigated. It is found that rather high temperatures must be chosen to establish a sufficient flux of oxygen into the cavity layer. On the other hand high temperatures lead to coarsening the cavities and removing the cavity layer finally.
Resumo:
Two kinds of Fe/Cu multilayers with different modulation wavelength were deposited on cleaved Si(100) substrates and then irradiated at room temperature using 400 keV Xe20+ in a wide range of irradiation fluences. As a comparison, thermal annealing at 300-900 degrees C was also carried out in vacuum. Then the samples were analyzed by XRD and the evolution of crystallite structures induced by irradiation was investigated. The obtained XRD patterns showed that, with increase of the irradiation fluence, the peaks of Fe became weaker, the peaks related to Cu-based fcc solid solution and Fe-based bcc solid solution phase became visible and the former became strong gradually. This implied that the intermixing at the Fe/Cu interface induced by ion irradiation resulted in the formation of the new phases which could not be achieved by thermal annealing. The possible intermixing mechanism of Fe/Cu multilayers induced by energetic ion irradiation was briefly discussed.
Resumo:
Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5x10(11) ions/cm(2) but becoming dominant when increasing the fluence to 8x10(12) ions/cm(2). Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Gruneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.
Resumo:
In this work a study of damage production in gallium nitride via elastic collision process (nuclear energy deposition) and inelastic collision process (electronic energy deposition) using various heavy ions is presented. Ordinary low-energy heavy ions (Fe+ and Mo+ ions of 110 keV), swift heavy ions (Pb-208(27+) ions of 1.1 MeV/u) and slow highly-charged heavy ions (Xen+ ions of 180 keV) were employed in the irradiation. Damage accumulation in the GaN crystal films as a function of ion fluence and temperature was studied with RBS-channeling technique, Raman scattering technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ordinary low-energy heavy ion irradiation, the temperature dependence of damage production is moderate up to about 413 K resulting in amorphization of the damaged layer. Enhanced dynamic annealing of defects dominates at higher temperatures. Correlation of amorphization with material decomposition and nitrogen bubble formation was found. In the irradiation of swift heavy ions, rapid damage accumulation and efficient erosion of the irradiated layer occur at a rather low value of electronic energy deposition (about 1.3 keV/nm(3)),. which also varies with irradiation temperature. In the irradiation of slow highly-charged heavy ions (SHCI), enhanced amorphization and surface erosion due to potential energy deposition of SHCI was found. It is indicated that damage production in GaN is remarkably more sensitive to electronic energy loss via excitation and ionization than to nuclear energy loss via elastic collisions.
Resumo:
In the present work p-type Si specimens were implanted with Cl ions of 100 keV to successively increasing fluences of 1 x 10(15), 5 x 10(15), 1 x 10(16) and 5 x 10(16) ions cm(-2) and subsequently annealed at 1073 K for 30 min. The microstructure was investigated with the transmission electron microscopy (TEM) in both the plane-view and the cross-sectional view. The implanted layer was amorphized after chlorine implantation even at the lowest ion fluence, while re-crystallization of the implanted layer occurs on subsequent annealing at 1073 K. In the annealed specimens implanted above the lowest fluence three layers along depth with different microstructures were found, which include a shallow polycrystalline porous layer, a deeper single-crystalline layer containing high density of gas bubbles, a well separated deeper layer composed of dislocation loops in low density. With increasing ion fluence the thickness of the porous polycrystalline layer increases. It is indicated that chlorine can suppress the epitaxial re-crystallization of implanted silicon, when the implant fluence of Cl ions exceeds a certain level.
Resumo:
Thermally grown amorphous SiO2 samples were implanted at room temperature (RT) with 120 keV C-ions to a dose ranging from 1.0 x 10(16) to 8.6 x 10(17)C ions/cm(2), then irradiated at RT with 950 MeV Pb, 345 or 1754 MeV Xe ions to a fluence in the region from 1.0 x 10(11) to 3.8 x 10(12) ions/cm(2), respectively. The irradiated samples were investigated using micro-FTIR and micro-Raman spectroscopes. It was found that new chemical bonds such as Si-C, C=C(O), C C and Si(C)-O-C bonds formed significantly in the C-doped SiO2 films after heavy ion irradiations. The evolution of Si-O-C bonds and possible mechanism of structural modification in C-doped SiO2 induced by swift heavy ion irradiations were discussed.
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.
Resumo:
Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.
Resumo:
A thermodynamic model of the evolution of microcracks in silicon caused by helium and hydrogen co-implantation during annealing was studied. The crack growth rate relies on the amount of helium atoms and hydrogen molecules present. Here, the crack radius was studied as a function of annealing time and temperature, and compared with experimental results. The mean crack radius was found to be proportional to the annealing temperature and the helium and hydrogen implanted fluence. The gas desorption should be considered during annealing process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Magnesium aluminate spinel crystals (MgAl2O4 (1 1 0)) deposited with 30 nm Cu film on surface were implanted with 110 key Ar-ions to a fluence of 1.0 x 10(17) ions/cm(2) at 350 degrees C, and then annealed in vacuum condition at the temperature of 500, 600, 700, 800 and 900 degrees C for 1 h, respectively. Ultraviolet-visible spectrometry (UV-VIS), scanning electron microscopy (SEM), Rutherford backscattering (RBS) and transmission electron microscopy (TEM) were adopted to analyze the specimens. After implantation, the appearance of surface plasmon resonance (SPR) absorbance peak in the UV-VIS spectrum indicated the formation of Cu nanoparticles, and the TEM results for 500 degrees C also confirmed the formation of Cu nanoparticles at near-surface region. In annealing process, The SPR absorbance intensity increased at 500 and 700 degrees C, decreased with a blue shift of the peak position at 600 and 800 degrees C, and the peak disappeared at 900 degrees C. The SPR absorbance intensity evolution with temperature was discussed combined with other measurement results (RBS, SEM and TEM). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Single crystals of 6H-SiC were implanted at 600 K with 100 key He ions to three successively fluences and subsequently annealed at different temperatures ranging from 873 to 1473 K in vacuum. The recovery of lattice damage was investigated by different techniques including Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy and Fourier transform infrared spectroscopy. All three techniques showed that the damage induced by helium ion implantation in the lattice is closely related to the fluence. Rutherford backscattering spectrometry/channeling data on high temperature implantations suggest that for a fluence of 3 x 10(16) He+/cm(2), extended defects are created by thermal annealing to 1473 K. Apart from a well-known intensity decrease of scattering peaks in Raman spectroscopy it was found that the absorbance peak in Fourier transform infrared spectroscopy due to the stretching vibration of Si-C bond shifted to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with increasing annealing temperature. These phenomena are attributed to different lattice damage behavior induced by the hot implantation process, in which simultaneous recovery was prevailing. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted monocrystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 (1) over bar 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5 x 10(16) ions/cm(2). Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed. (C) 2009 Elsevier B.V. All rights reserved.