214 resultados para chlorophyll mutation ultrastructure 2-D
Resumo:
本工作合成了MF_2:Eu~(2+)(M = Mg、Ca、Sr、Ba); AlF_3:Eu~(2+); Ax:Eu~(2+) (A = Na、k; x = Cl. Br); A_2BeF_4:Eu~(2+) (A = Na、k); ABF_4:Eu~(2+)、A_2SiF_6:Eu~(2+) (A = Na、k、Rb、Cs); NasAl_3F_(14):Eu~(2+)、Na_3AlF_6:Eu~(2+)、K_2MgF_4:Eu~(2+); Al_2O_3:Eu~(2+)、BeAl_2O_4:Eu~(2+)化合物。测定了所含成化合物的晶体结构、荧光光谱、光电子能谱。第一次在AlF_3:Eu~(2+)、 Al_2O_3:Eu~(2+)、BeAl_2O_4:Eu~(2+)中观察到Eu~(2+)的f→f跃迁发射。据我们所知,在单一氧氟化物、单一氧化物中观察到Eu~(2+)的f→f跃迁发射,还是首次。第一次在强晶场、低配位数体系(如:NaBF_4A:Eu~(2+)、Na_2SiFe_6:Eu~(2+)、Na_2BeF_4:Eu~(2+)-K_2BeF_4:Eu~(2+)、Na_5Al_3F_(14):Eu~(2+))中观察到了Eu~(2+)的f→f跃迁发射。这与Blasse、Fouassier 的观点是不相符的。讨论了Eu~(2+)在所合成化合物中的价态稳定性。Eu~(2+)在所合成化合物中价态是稳定的,从光电子能谱看出尾有少量Eu~(2+)与Eu~(2+)光存。研究了Eu~(2+)的光谱结构与其所处晶场环境、化学键性质的关系。Eu~(2+)的光谱结构由晶场:化学键性质所产生的影响的共同结果来决定。晶场强度是键长的函数,Eu-L化学键的性质除同L有关外,还与邻近的Eu~(2+)的阳离子有关,邻近Eu~(2+)阳离子电负性的大小对Eu-键的共价作用产生很大的影响。采用Sanderson电负性标度计算了 Eu在 MF_2:Eu~(2+)(M = Mg、Ca、Sr、Br)。AlF_3:Eu~(2+)中所带分电荷,以及Eu-F键的离子性、共价成份。
Resumo:
本文回顾和评述了Ziegler-Natra催化双烯定向聚合的发展,现状及展望,特别是较为详细地讨论了稀土体系的聚合催化剂,聚合机理,聚合动力学以及双烯本体聚合的有关问题。本工作的第一部分内容研究了异戊二烯在Nd(naph)_3 + Al(i-Bu)_3 + Al_2Et_3Cl_3催化体系作用下的本体聚合热效应及本休聚合动力学。指出任本实验条件,温度在-10 ℃ - +5 ℃范围内,聚合体系内温度和聚合环境温度基本一致。在此实验条件下,聚合过程可分为三阶段:聚合初期,聚合活性中心数目尚未稳定,聚合速率逐渐增大,为非稳态聚合阶段;聚合中期,聚合速率恒定,聚合呈稳态特征;聚合后期,聚合为扩散控制阶段。并得到稳太聚合阶段的聚合动力学方程 R_p = k_p[Cat]~(1.96)M. 其聚合反应表观活化能为16.7 kcal/mol。同时考究了聚合物特性粘数和分子量随聚合转化率,聚合催化剂用量,聚合温度等等变化民政部实验结果表明,该催化体系异戊二烯本体聚合仍具有活性聚合的某些特征。本工作的第二部分根据不同催化剂对聚异戊二烯甲苯溶液的作用结果,解释了TiCl_4 + Al(i-Bu)_3催化体系异戊二烯本体聚合转化率很低。聚合产物的凝胶含量较高,而NCl(naph)_3 + Al(i-Bu)_3 + Al_2Et_3Cl_3催化体系异戊二烯本体聚合转化率很容易达到80%。 聚合产物基本不含凝胶的实验事实。实验结果表明,将Ti催化剂加入异戊胶液中,有凝胶生成,且凝胶生成量随催化剂用量的增大而增大。而Nd催化剂不能使异戊胶液生成凝胶。这证实了在异戊二烯本体聚合和溶液聚合中,由于Ti催化剂的阳离子活性,可使线性聚异戊二烯中的不饱合双键发生阳离子反应,生成聚集体结构,星形结构、三维网状结构等三种可能结构的凝胶大分子。从而说明因生成结构紧密的凝胶分子将聚合活性中心紧紧地包围在其中,单体向活性能心扩散困难,致使Ti体系异戊二烯聚合转化率很难提高。根据红外及核磁谱图,Ti或Nd催化剂的加入均未改变聚合物的微观结构,更无环化结构生成。认为聚合物在两催化剂作用下,特性粘数的降低是由于聚合物链存在的不稳定位置及不饱合双键在催化剂的作用下发生了断链或断链后进一步支化所引起的。
Resumo:
雌雄异株植物对环境的不同响应一直是一个有趣而新颖的研究领域,由于雌雄个体不同的繁殖成本及不同的生存策略,使得雌雄植株在生长、存活、生殖格局、空间分布、资源配置等方面已经表现出明显的不同,在生理和分子水平上也表现出明显的性别间差异。干旱是制约农林业发展的环境因子之一,叶锈病是对杨树危害最严重的病害之一,由于长期进化的结果,不同性别的植物必然对生物和非生物胁迫有着不同的响应。本文以雌雄异株的青杨为模式植物,研究雌雄间在生理、生化、亚细胞结构和蛋白质水平上对生物和非生物胁迫的差异响应。主要研究结果如下: (1) 青杨雌雄植株对锈病胁迫的生理生化差异响应 在正常的对照组中,雄株叶片比雌株叶片有着较高的活性氧自由基产生速率、较高的SOD、POD、PPO 和较低的CAT 活性;在锈病感染的早期阶段, SOD、POD、CAT 活性、活性氧自由基产生速率、H2O2 含量、膜脂过氧化程度和细胞膜的电渗率在雌雄株中都增加,而PPO 仅在雄株中增加明显,APX 仅在雌株中增加明显,并且雌株比雄株有着更严重的锈病感染程度、细胞膜的伤害程度和光合系统II 的破坏程度,雌株有更多的净光合速率、气孔导度和叶绿素a 含量的降低,在同工酶变化上,雌雄间对锈病也显示出不同的表达模式。结果显示,雄株比雌株对锈病有着更好的抗性和更有效的ROS 清除系统。 (2) 青杨雌雄植株对干旱胁迫的生理生化及亚细胞结构的差异响应 与较好水分条件相比,干旱下雄株比雌株有着更高的A-Ci 响应参数,如Rubisco 最大羧化速率、光呼吸速率、暗呼吸速率和最大电子传递速率等。干旱显著地增加了膜脂过氧化程度和游离脯氨酸含量,并且雄株比雌株表现出较低的膜脂过氧化程度,较高的总蛋白和游离脯氨酸含量。无论是中度干旱还是极度干旱,除了CAT 外,雄株比雌株表现为较强的抗氧化酶活性,在同工酶谱带上,雌雄间表现出不同的变化模式,并且有些条带是干旱影响应的,而有些条带是性别特异性的,这些性别特异性条带能够作为鉴定性别快速而准确的标记。干旱显著地影响了线粒体、叶绿体和细胞壁的结构,尤其在中度干旱胁迫下,雄株线粒体和叶绿体比雌株呈现出较好的完整性,并且雄株细胞壁要比雌株更厚。因此, 雄株比雌株表现出更强的干旱忍耐性和更高效的抗氧化酶系统。 (3) 青杨雌雄植株对干旱胁迫的蛋白质组差异响应 用双相电泳检测到雌雄间近1000 个蛋白点,通过对比发现对照组雌雄间有54 个差异蛋白点,干旱下雌雄间有108 个差异点,其中102 个被质谱成功鉴定。对照组雌雄间的差异蛋白主要集中在与光合作用相关蛋白、抗氧化酶、胁迫防御蛋白和一些调节基因表达的蛋白;干旱胁迫下雌雄间差异蛋白明显增多,主要有参与信号转导、调节基因表达、蛋白质加工、转录产物的转录翻译后修饰的调节性蛋白蛋白和参与氧化还原平衡、抗胁迫、细胞壁合成、光合作用、能量代谢、氨基酸代谢和脂肪酸代谢等的功能性蛋白。干旱下这些蛋白的表达量在雌雄中有的表现出相同的表达模式,如干旱下雌雄株中Rubisco 激活酶、小热激蛋白等表达都增加,而有的表现出相反的表达模式,如Rubisco 大亚基的降解片段、羰酸酯酶等在雄株中表达量上调而在雌株中却是下调。因此,雌雄间在蛋白质水平上对干旱胁迫响应的差异是显著的,也是复杂的。 It is an interesting and novel topic that dioecious plants possess different responses to environmental stress. As for the different productive cost and different survive strategy, different sexual plants have shown obviously morphological, physiological and molecular differences. Drought is one of the most worldwidely important environmental stress factors that limit plant growth and ecosystem productivity. Rust disease is one of the economically important diseases in many trees. As a result of the long evolutionary process, male and female plants should show different responses to abiotic and biotic stress. In this paper, using a dioeious tree of Populus cathayana Rehd as a model, we study the sexual differences to drought and rust disease stress in physiological, biochemical, sub-cellular and proteomics levels. The main results are follows: (1) The sexual differences in physiology and biochemistry of poplar to rust disease In controls, males showed higher production of superoxide radicals, higher activities of SOD, POD, PPO and lower CAT activity. Under rust disease, the activities of antioxidant, the content of ROS and the degree of cellular member destroyed were increased in both sexes, except for PPO in diseased males and APX in diseased females. However, females showed more seriously disease severity and cellular member and PS II destroyed degrees. Net photosynthesis rate, transpiration rate and chlorophyll a content were decreased more in diseased females than in males. There were also some different changes inantioxidant isozymes under rust disease. The results suggested that male poplar possessed a more effectively antioxidant system and were more resistant to rut disease than females. (2) The sexual differences in physiology and biochemistry of poplar to drought stress Under drought stress, there were higher rates of RuBP-saturated CO2 assimilation, dark respiration, photorespiratory release of oxygen, the max electron transportrate in CO2-saturated and carboxylation efficiency in males than in females. And males showed lower TBARS and higher proline content. Except for CAT, the activities of other antioxidants were higher in males than in females. Meanwhile, there were obviously differences in isozyme changes between teo sexes. Drought stress obviously destroyed the integralities of chloroplasts and mitochondria and the sexual differences in sub-cellular level were obviously under the moderate water stress. Male cell walls were more sensitive to drought stress than did female. The results suggested males were more resistant to drought stress. (3) The sexual differences in proteomics of poplar to drought stress By 2-D and MS analysis, we identified 102 different protein spots between males and females. Under control conditions, the different proteins were mainly in photosynthesis related proteins, antioxidants, stress response proteins and some gene expression related proteins. Under drought stress, the different proteins were focused on (i) regulated proteins such as signaling conduction, kinase, HSP, gene expressional regulation and protein modification, (ii) functional proteins such as photosynthesis, energy metabolism, antioxidant, redox, stress response, lipid metabolism and amino acid metabolism. Some protein showed the same expressional pattern, while some showed contrary expressional pattern. Thus, the results suggested that sexual differences in proteomics were significant and complex.
Resumo:
Chiral ligand 2-(2'-piperidinyl)pyridine 1 has been synthesized in good overall yield by sequential benzylation, hydrogenation and debenzylation of 2,2'-bipyridine. Its enantiomerically pure enantiomers have been obtained by resolution of 2-(1-benzyl-2-piperidinyl)pyridine 2 with D-tartaric acid (or L-tartaric acid) followed by debenzylation. The absolute configuration was determined by X-ray analysis of the (S)-2 D-tartrate. It was demonstrated that I can be used as an effective enantioselective catalyst in the addition of diethylzinc to aldehydes.
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
A copper-strontium heterometallic coordination polymer was synthesized and characterized by elemental analysis and IR spectra. The crystal structure was determined by single-crystal X-ray diffraction analyses. The title complex is a 2 D coordination polymer with the chemical formula [[(CuL)(2)Sr (H2O) center dot Sr-2 ((HO)-O-2)(7)]center dot 2H(2)O center dot 0.5CH(3)OH](n), where H4L = N-(2-hydroxybenzamido)-N'-(3-carboxylsalicylidene) ethylenediamine. Its structural unit is comprised of two adjacent units, which polymerized with each other to form a new layered heterometallic coordination polymer.
Resumo:
Two novel organic-inorganic hybrid compounds, (H(2)enMe)(4)(H3O)[Ni(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (1) and (H(2)enMe)(4)(H3O)[Cu(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (2) (enMe = 1,2-diaminopropane), have been hydrothermally synthesized and characterized by elemental analyses, IR, EPR, XPS, UV-Vis spectra and TG analyses. Single crystal X-ray diffraction shows that 1 and 2 are isostructural compounds. Both the compounds exhibit an unusual two-dimensional (2-D) window-like network consisting of one-dimensional (1-D) chains of sodium molybdenum phosphate anions connected by transition metal coordination complexes cations. Compound 1 and 2 represent the first 2-D molybdenum phosphate skeleton pillared by transition metal complex fragments.
Resumo:
The formation of ( t-BuCp)(2)ErOEt was discussed. Its single-crystal structure was determined by X-ray diffraction. The crystal is monoclinic, P2(1)/c space group, a = 1.0191(2), b = 1.6203(5), c = 1.2118(3) nm, beta = 102. 960( 10)degrees, V = 1.9500 (nm(3)), Z = 2, D-c = 1.566 mg . m(-3), R = 0.0450, R-w = 0.1363. The complex is monomeric and solvent-free in the solid state. The erbium ion is coordinated by two tert-butyl-cyclopentadienyl rings and one oxygen atom of ethoxy group to form a seven-coordinated complex.
Resumo:
A new complex [Ni (en)(2)V6O14](n) was hydrothermally synthesized and characterized by 2-dimensional vanadium oxide framework pillared by Ni(en)(2)group. Single crystal X-ray analysis indicates that this compound crystallizes in monoclinic system, space group P2(1)/c with a=0. 892 17(18) nm, b = 1. 711 1(3) nm, c=0. 662 73(13) nm, beta=111. 58(3)degrees, V=0.940 8(3) nm(3), Z=2, D-c=2.501 g/cm(3), R=0. 042 3, omegaR=0. 060 9, S=1. 006.
Resumo:
Two novel compounds, [Co(4,4'-bipy)(H2O)(4)](4-abS)(2).H2O (1) and [Mn(4,4'-bipy)(H2O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis. X-ray structural analysis revealed that 1 and 2 both possess unusual hydrogen-bonded three-dimensional (3-D) networks encapsulating one-dimensional (1-D) covalently bonded infinite [M(4,4'-bipy)(H2O)(4)](2+) (M = Co, Mn) chains. The 4-abs anions in 1 form 1-D zigzag chains through hydrogen bonds. These chains are further extended through crystallization water molecules into 3-D hydrogen-bonded networks with 1-D channels, in which the [Co(4,4'-bipy)(H2O)(4)](2+) linear covalently bonded chains are located. Crystal data for 1: C22H30CoN4O11S2, monoclinic P2(1), a = 11.380(2) Angstrom, b = 8.0274(16) Angstrom, c = 15.670(3) Angstrom, alpha = gamma = 90degrees, beta = 92.82(3)degrees, Z = 2. Compound 2 contains interesting two-dimensional (2-D) honeycomb-like networks formed by 4-abs anions and lattice water molecules via hydrogen bonding, which are extended through other crystallization water molecules into three dimensions with 1-D hexagonal channels. The [Mn(4,4'-bipy)(H2O)(4)](2+) linear covalent chains exist in these channels. Crystal data for 2: C22H32WN4O12S2, monoclinic P2(1)/c, a = 15.0833(14) Angstrom, b = 8.2887(4) Angstrom, c = 23.2228(15) Angstrom, alpha = gamma = 90degrees, beta = 95.186(3)degrees, Z = 4.
Resumo:
A new compound [H(2)en](2)[H3O](6)[Co(H2O)(2)(VO)(8)(OH)(4)(PO4)(8)] has been hydrothermally synthesized. Single crystal X-ray analysis indicates that this compound crystallizes in a monoclinic system, space group P2(1)/n with a=1.438 5(3) nm, b=1.012 2(2) nm, c=1.832 5(4) nm, beta=90.21degrees, V=2.668 2 (9) nm(3), Z = 2, D-c = 2.112 g/cm(3), R = 0.055, wR = 0.149 7, S = 1.037. The structure of [H(2)en](2)[H3O](6)[Co(H2O)(2)(VO)(8)(OH)(4)(PO4)(8)] is characterized by P-V-O layers constructed by [(VO)4 (OH)(2)(PO4)(4)](6-) non-symmetric units. The P-V-O layers are pillared by [Co(H2O)(2)](2+) group, resulting in the channels within which the protonated diaminoethane and H3O+ are located.
Resumo:
An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5).0.5H(2)O (1) and (TMP)(2)(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic 'anion bridge I', C(2)-H..X...pyrimidinium (X = Br in 1 and 1 in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The 'anion bridge II' of the type N(4'1)-H...X...thiazolium (X = phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.
Resumo:
[PrAl (CF3COO)(2) (CF3CHOO) (C2H5)(2) (C4H8O)(2)](2) M-r = 1420. 56, monoclinic, P2(1)/n, a = 10. 651 (6) , b = 24. 276(9), c = 11. 110(5) Angstrom, beta = 107. 650 (4)degrees , V = 2737. 4(1) Angstrom (3) , Z = 2, D-c = 3. 45 g/cm(3) , F(000) = 2816 , T = 233K, MoK alpha radiation (lambda= 0. 71069 Angstrom), mu(MoK alpha) = 38. 017 cm(-1) , R = 0. 048 for 2847 observed reflections (I greater than or equal to 3 sigma(I)). It is isostructural with [LnAl (CF3COO)(2) (CF3CHOO) -R-2 (C4H8O)(2)](2) (Ln = Ho, R = Et; Ln = Ndt Y, R = Bu-1). Pr3+ is coordinated by eight oxygen atoms from five bridging ligands and two THF forming a distorted bicap-prism.
Resumo:
The crystal structure and mechanism of the title molecule are described. This crystal is orthorhombic, belonging to space group PC21/B with a=1,002 1(2) nm, b=1.483 0(3) nm, c=2.173 6(4) nm, V=3.230 39(2) nm(3), Z=2, D-c=1.80 g/cm(3), R=0.069 3. The structure was solved by direct method. The tin atom of the title compound exists in two distorted-trigonal-bipyramidal geometry, defined by two carbon, one bromide, one chloride and one oxygen atoms leading to a five-membered chelate ring. In the structure, the five-membered ring containing the intermolecular O-->Sn has a half chair conformation.