452 resultados para Parabolic quantum wells
Resumo:
By means of the transfer matrix technique, interface-induced Rashba spin splitting of conduction subbands in Al0.3Ga0.7As/GaAs/AlxGa1-xAs/Al0.3Ga0.7As step quantum wells which contain internal structure inversion asymmetry introduced by the insertion of AlxGa1-xAs step potential is investigated theoretically in the absence of electric field and magnetic field. The dependence of spin splitting on the well width, step width and Al concentration is investigated in detail. We find that the sign of the first excited subband spin splitting changes with well width and step width, and is opposite to that of the ground subband under certain conditions. The sign and strength of the spin splitting are shown to be sensitive to the components of the envelope function at three interfaces. Copyright (C) EPLA, 2009
Resumo:
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/AlyGa1-yAs/AlxGa1-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.
Resumo:
The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices.
Resumo:
We have investigated spin polarization-related localized exciton photoluminescence (PL) dynamics in GaInNAs quantum wells by time-resolved PL spectroscopy. The emission energy dependence of PL polarization decay time as well as polarization-independent PL decay time suggests that the acoustic phonon scattering in the process of localized exciton transfer from the high-energy localized states to the low-energy ones dominates the PL polarization relaxation. By increasing the excitation power from 1 to 10 mW, the PL polarization decay time is changed from 0.17 to more than 1 ns, which indicates the significant effect of the trapping of localized electrons by nonradiative recombination centers. These experimental findings indicate that the spin-related PL polarization in diluted nitride semiconductors can be manipulated through carrier scattering and recombination process. (C) 2009 The Japan Society of Applied Physics
Resumo:
We investigate theoretically the Dyakonov-Perel spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment [K. L. Litvinenko et al., New J. Phys. 8, 49 (2006)]. We find a strong resonant enhancement of the spin relaxation time appears for spin align along [1 (1) over bar0] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.
Resumo:
InGaN based light emitting devices (LEDs) with asymmetric coupled quantum wells (AS-QWs) and conventional symmetric coupled quantum wells (CS-QWs) active structures were grown by metal-organic chemical vapor deposition technique. The LEDs with AS-QWs active region show improved light emission intensity and reduced forward voltage compared with LEDs with CS-QWs active region. Based on the electroluminescence measurements and the devices structure analysis, it can be concluded that these improvements are mainly attributed to the efficient hole tunneling through barriers and consequently the uniform distribution of carriers in the AS-QWs. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3254232]
Resumo:
We investigate the temperature dependence of photoluminescence (PL) and time-resolved PL on the metamorphic InGaAs quantum wells (QWs) with an emission wavelength of 1.55 mu m at room temperature. Time-resolved PL measurements reveal that the optical properties can be partly improved by introducing antimony (Sb) as a surfactant during the sample growth. The temperature dependence of the radiative lifetime is measured, showing that for QWs grown with Sb assistance, the intrinsic exciton emission is dominated when the temperature is below 60 K, while the nonradiative process becomes activated with further increases in temperature. However, without Sb assistance, the nonradiative centers are activated when the temperature is higher than 20 K.
Resumo:
The relaxation of the misfit strain by the formation of misfit dislocations in InxGa1-xN/GaN multiple quantum wells grown by metal-organic chemical-vapor deposition was investigated by the cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. It is found that the misfit dislocations generated from strain relaxation are all pure-edge threading dislocations with burgers vectors of b=1/3<11 (2) over bar0>. The misfit dislocations arise from the strain relaxation due to the thickness of strained layer greater than the critical thickness. The relaxation of strained layer was mainly achieved by the formation of dislocations and localization of In, while the dislocations changed their slip planes from {0001} to {10 (1) over bar0}. With the increasing temperature, the efficiency of photoluminescence decrease sharply. It indicates that the relaxation of the misfit strain has a strong effect on optical efficiency of film. (C) 2004 American Institute of Physics.
Resumo:
Triple-axis x-ray diffraction (TXRD) and photoluminescence (PL) spectra are used to assess the influence of the ratio of TMIn flow to group III flow on structural defects, such as dislocations and interface roughness, and optical properties of multiple quantum wells(MQWs). In this paper the mean densities of edge and screw dislocations in InGaN/GaN MQWs are obtained by W scan of every satellite peak of (0002) symmetric and (1012) asymmetric diffractions. At the same time, the interface roughness is measured by the radio of the full width at half maximum of satellite peaks to the peak orders. The experimental results showed that the density of dislocation, especially of edge dislocation, and interface roughness increase with the increase of the ratio, which leads to the decrease of PL properties. It also can be concluded that the edge dislocation acts as nonradiative recombination centers in InGaN/GaN MQWs. Also noticed is that the variation of the ratio has more influence on edge dislocation than on screw dislocation.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.
Resumo:
InGaN/GaN multiple quantum wells (MQWs) are grown by metal-organic chemical vapour deposition on (0001) sapphire substrates. Triple-axis X-ray diffraction (TXRD) and photoluminescence (PL) spectra are used to assess the influence of trimethylgallium (TMGa) flow on structural defects, such as dislocations and interface roughness, and the optical properties of the MQWs. In this paper, a method, involving an ! scan of every satellite peak of TXRD, is presented to measure the mean dislocation density of InGaN/GaN MQWs. The experimental results show that under certain conditions which keep the trimethlyindium flow constant, dislocation density and interface roughness decrease with the increase of TMGa flow, which will improve the PL properties. It can be concluded that dislocations, especially edge dislocations, act as nonradiative recombination centres in InGaN/GaN MQWs. Also noticed is that changing the TMGa flow has more influence on edge dislocations than screw dislocations.
Resumo:
InGaN/GaN multiquantum-well (MQW) structures grown by metalorganic chemical-vapor deposition on n-type GaN and capped by p-type GaN were investigated by cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. For the sample with strained-layer thicknesses greater than the critical thicknesses, a high density of pure edge type threading dislocations generated from MQW layers and extended to the cap layer was observed. These dislocations result from a relaxation of the strained layers when their thicknesses are beyond the critical thicknesses. Because of indium outdiffusion from the well layers due to the anneal effect of Mg-doped cap layer growth and defects generated from strain relaxation, the PL emission peak was almost depressed by the broad yellow band with an intensity maximum at 2.28 eV. But for the sample with strained-layer thicknesses less than the critical thicknesses, it has no such phenomenon. The measured critical thicknesses are consistent with the calculated values using the model proposed by Fischer, Kuhne, and Richter. (C) 2004 American Institute of Physics.
Resumo:
The effects of pre-TMIn flow prior to QW growth and TMIn flow rates during QW growth on the interface and optical properties of InGaN/GaN MQWs were investigated. Pre-depositing indium prior to QW growth and an appropriate TMIn flow rate can improve the interface abruptness and increase the EL intensity. InGaN/GaN MQWs with improved interface abruptness have increasing emission intensity and wavelength. We attribute the interface improvement and the increase of EL intensity to the improvement of the indium compositional profiles. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence (PL) spectra of the GaInNAs/GaAs single quantum well (SQW) with different N compositions are carefully studied in a range of temperatures and excitation power densities. The anomalous S-shape temperature dependence of the PL peak is analysed based on the competition and switching-over between the peaks related to N-induced localized states and the peak related to interband excitonic recombination. It is found that with increasing N composition, the localized energy increases and the turning point of the S-shape temperature dependence occurs at higher temperature, where the localized carriers in the bandtail states obtain enough thermal activation energy to be dissociated and delocalized. The rapid thermal annealing (RTA) effectively reduces the localized energy and causes a decrease of the switching-over temperature.