6 resultados para Parabolic quantum wells
em CaltechTHESIS
Resumo:
We investigated four unique methods for achieving scalable, deterministic integration of quantum emitters into ultra-high Q{V photonic crystal cavities, including selective area heteroepitaxy, engineered photoemission from silicon nanostructures, wafer bonding and dimensional reduction of III-V quantum wells, and cavity-enhanced optical trapping. In these areas, we were able to demonstrate site-selective heteroepitaxy, size-tunable photoluminescence from silicon nanostructures, Purcell modification of QW emission spectra, and limits of cavity-enhanced optical trapping designs which exceed any reports in the literature and suggest the feasibility of capturing- and detecting nanostructures with dimensions below 10 nm. In addition to process scalability and the requirement for achieving accurate spectral- and spatial overlap between the emitter and cavity, these techniques paid specific attention to the ability to separate the cavity and emitter material systems in order to allow optimal selection of these independently, and eventually enable monolithic integration with other photonic and electronic circuitry.
We also developed an analytic photonic crystal design process yielding optimized cavity tapers with minimal computational effort, and reported on a general cavity modification which exhibits improved fabrication tolerance by relying exclusively on positional- rather than dimensional tapering. We compared several experimental coupling techniques for device characterization. Significant efforts were devoted to optimizing cavity fabrication, including the use of atomic layer deposition to improve surface quality, exploration into factors affecting the design fracturing, and automated analysis of SEM images. Using optimized fabrication procedures, we experimentally demonstrated 1D photonic crystal nanobeam cavities exhibiting the highest Q/V reported on substrate. Finally, we analyzed the bistable behavior of the devices to quantify the nonlinear optical response of our cavities.
Resumo:
This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.
In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.
Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.
Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.
The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.
Resumo:
The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.
Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.
The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.
In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.
Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.
Resumo:
Topological superconductors are particularly interesting in light of the active ongoing experimental efforts for realizing exotic physics such as Majorana zero modes. These systems have excitations with non-Abelian exchange statistics, which provides a path towards topological quantum information processing. Intrinsic topological superconductors are quite rare in nature. However, one can engineer topological superconductivity by inducing effective p-wave pairing in materials which can be grown in the laboratory. One possibility is to induce the proximity effect in topological insulators; another is to use hybrid structures of superconductors and semiconductors.
The proposal of interfacing s-wave superconductors with quantum spin Hall systems provides a promising route to engineered topological superconductivity. Given the exciting recent progress on the fabrication side, identifying experiments that definitively expose the topological superconducting phase (and clearly distinguish it from a trivial state) raises an increasingly important problem. With this goal in mind, we proposed a detection scheme to get an unambiguous signature of topological superconductivity, even in the presence of ordinarily detrimental effects such as thermal fluctuations and quasiparticle poisoning. We considered a Josephson junction built on top of a quantum spin Hall material. This system allows the proximity effect to turn edge states in effective topological superconductors. Such a setup is promising because experimentalists have demonstrated that supercurrents indeed flow through quantum spin Hall edges. To demonstrate the topological nature of the superconducting quantum spin Hall edges, theorists have proposed examining the periodicity of Josephson currents respect to the phase across a Josephson junction. The periodicity of tunneling currents of ground states in a topological superconductor Josephson junction is double that of a conventional Josephson junction. In practice, this modification of periodicity is extremely difficult to observe because noise sources, such as quasiparticle poisoning, wash out the signature of topological superconductors. For this reason, We propose a new, relatively simple DC measurement that can compellingly reveal topological superconductivity in such quantum spin Hall/superconductor heterostructures. More specifically, We develop a general framework for capturing the junction's current-voltage characteristics as a function of applied magnetic flux. Our analysis reveals sharp signatures of topological superconductivity in the field-dependent critical current. These signatures include the presence of multiple critical currents and a non-vanishing critical current for all magnetic field strengths as a reliable identification scheme for topological superconductivity.
This system becomes more interesting as interactions between electrons are involved. By modeling edge states as a Luttinger liquid, we find conductance provides universal signatures to distinguish between normal and topological superconductors. More specifically, we use renormalization group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as a lead. Interestingly, arbitrarily weak interactions induce qualitative changes in the behavior relative to the free-fermion limit, leading to a sharp dichotomy in conductance for the trivial (narrow superconductor) and topological (wide superconductor) cases. Furthermore, we find that strong interactions can in principle induce parafermion excitations at a superconductor/quantum spin Hall junction.
As we identify the existence of topological superconductor, we can take a step further. One can use topological superconductor for realizing Majorana modes by breaking time reversal symmetry. An advantage of 2D topological insulator is that networks required for braiding Majoranas along the edge channels can be obtained by adjoining 2D topological insulator to form corner junctions. Physically cutting quantum wells for this purpose, however, presents technical challenges. For this reason, I propose a more accessible means of forming networks that rely on dynamically manipulating the location of edge states inside of a single 2D topological insulator sheet. In particular, I show that edge states can effectively be dragged into the system's interior by gating a region near the edge into a metallic regime and then removing the resulting gapless carriers via proximity-induced superconductivity. This method allows one to construct rather general quasi-1D networks along which Majorana modes can be exchanged by electrostatic means.
Apart from 2D topological insulators, Majorana fermions can also be generated in other more accessible materials such as semiconductors. Following up on a suggestion by experimentalist Charlie Marcus, I proposed a novel geometry to create Majorana fermions by placing a 2D electron gas in proximity to an interdigitated superconductor-ferromagnet structure. This architecture evades several manufacturing challenges by allowing single-side fabrication and widening the class of 2D electron gas that may be used, such as the surface states of bulk semiconductors. Furthermore, it naturally allows one to trap and manipulate Majorana fermions through the application of currents. Thus, this structure may lead to the development of a circuit that enables fully electrical manipulation of topologically-protected quantum memory. To reveal these exotic Majorana zero modes, I also proposed an interference scheme to detect Majorana fermions that is broadly applicable to any 2D topological superconductor platform.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.