82 resultados para Motion Compensation
Resumo:
We demonstrate theoretically and experimentally compensation for positive Kerr phase shifts with negative phases generated by cascade quadratic processes. Experiments show correction of small-scale self-focusing and whole-beam self-focusing in the spatial domain and self-phase modulation in the temporal domain. (C) 2001 Optical Society of America.
Resumo:
Based on the Coulomb friction model, the frictional motion model of workpiece relating to the polishing pad was presented in annular polishing. By the dynamic analysis software, the model was simulated and analysed. The conclusions from the results were that the workpiece did not rotate steadily. When the angular velocity of ring and the direction were the same as that of the polishing pad, the angular velocity of workpiece hoicked at the beginning and at the later stage were the same as that of the polishing pad before contacting with the ring. The angular velocity of workpiece vibrated at the moment of contacting with the ring. After that the angular velocity of workpiece increased gradually and fluctuated at a given value, while the angular velocity of ring decreased gradually and also fluctuated at a given value. Since the contact between the workpiece and the ring was linear, their linear velocities and directions should be the same. But the angular velocity of workpiece was larger than that of the polishing pad on the condition that the radius of the workpiece was less than that of the ring. This did not agree with the pure translation principle and the workpiece surface could not be flat, either. Consequently, it needed to be controlled with the angular velocity of ring and the radii of the ring and the workpiece, besides friction to make the angular velocity of workpiece equal to that of the polishing pad for obtaining fine surface flatness of the workpiece. Copyright © 2007 Inderscience Enterprises Ltd.}
Resumo:
There are two different effects to generate group delay dispersion by multilayer thin film mirrors: chirper effect and Gires-Tournois effect. Both effects are employed to introduce desired dispersion in the designed mirror. Thus the designed mirror provides large dispersion throughout broad waveband. Such mirror can be used for dispersion compensation in Ti:sapphire femtosecond lasers. Most group delay dispersion of a 5-mm Ti:sapphire crystal can be compensated perfectly with only four bounces of the designed mirror.
Resumo:
Unless the fabrication error control is well treated, it easily causes overetched fabrication errors, which causes the resonant peak value deviation during the fabrication process of guided-mode resonant filters (GMRFs). Hence, the fabrication error control becomes a key point for improving the performance of GMRF. We find that, within the range of the groove depth from 93 to 105 nm, the relationship between the overetched error and the resonant peak value deviation is nearly linear, which means that we can compensate the reflectance response deviation and reduce the resonant peak value deviation by the method of covering the layer film on the GMRF. Simulation results show that the deviation is compensated perfectly by this way. (C) 2008 Optical Society of America
Resumo:
A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.
Resumo:
In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Resumo:
The effect of bonding-wire compensation on the capacitances of both the submount and the laser diode is demonstrated in this paper. The measured results show that the small-signal magnitude-frequency responses of the TO packaged laser and photodiode modules can be improved by properly choosing the length of the bonding wire. After packaging, the phase-frequency responses of the laser modules can also be significantly improved (c) 2005 Wiley Periodicals, Inc.
Resumo:
Positron annihilation lifetime (PAL) and photoinduced current transient spectroscopies (PICTS) have been employed to study the formation of compensation defects in undoped InP under different annealing processes with pure phosphorus (PP) ambience and iron phosphide (IP) ambience, respectively. The different annealing ambiences convert the as-grown n-type undoped InP into two types of semi-insulating (SI) states. The positron average lifetimes of as-grown InP, PP SI-InP, and IP SI-InP are found to be 246, 251, and 243 ps, respectively, which are all longer than the bulk lifetime of 240 ps, indicating the existence of vacancy-type positron-trapping defects. For as-grown InP, VInH4 complexes are the dominant defects. They dissociate into VInHn(0less than or equal tonless than or equal to3) acceptor vacancies under PP ambience annealing, compensating the residual shallow donors and turning the material semi-insulating. In forming IP SI-InP, diffusion of iron into V-In complexes under IP ambience annealing produces the substitutional compensation defect Fe-In, causing a shorter positron average lifetime. The PICTS measurements show that a group of vacancy-type defects has been suppressed by iron diffusion during the annealing process, which is in good agreement with the PAL results. (C) 2003 American Institute of Physics.
Resumo:
Positron-annihilation lifetime and positron-annihilation Doppler-broadening (PADB) spectroscopies have been employed to investigate the formation of vacancy-type compensation defects in n-type undoped liquid encapsulated Czochrolski grown InP, which undergoes conduction-type conversions under high temperature annealing. N-type InP becomes p-type semiconducting by short time annealing at 700 degreesC, and then turns into n-type again after further annealing but with a much higher resistivity. Long time annealing at 950 degreesC makes the material semi-insulating. Positron lifetime measurements show that the positron average lifetime tau(av) increases from 245 ps to a higher value of 247 ps for the first n-type to p-type conversion and decreases to 240 ps for the ensuing p-type to n-type conversion. The value of tau(av) increases slightly to 242 ps upon further annealing and attains a value of 250 ps under 90 h annealing at 950 degreesC. These results together with those of PADB measurements are explained by the model proposed in our previous study. The correlation between the characteristics of positron annihilation and the conversions of conduction type indicates that the formation of vacancy-type defects and the progressive variation of their concentrations during annealing are related to the electrical properties of the bulk InP material. (C) 2002 American Institute of Physics.
Resumo:
In our recent report, [Xu , Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n(+) layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n(+) conductivity is not only from the contribution of nitride-site oxygen (O-N), but also from the gallium-site silicon (Si-Ga) donors, with activation energies 2 meV (for O-N) and 42 meV (for Si-Ga), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. Si-Ga and O-N should also be shallow donors and V-Ga-O or V-Ga-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration N-A=1.8x10(17) cm(-3), the second donor concentration N-D2=1.0x10(18) cm(-3), and the compensation ratio C=N-A/N-D1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. (C) 2001 American Institute of Physics.
Resumo:
The effects of hydrogen dilution, subtle boron compensation, and light-soaking on the gap states of hydrogenated amorphous silicon films (a-Si:H) near and above the threshold of microcrystallinity have been investigated in detail by the constant photocurrent method and the improved phase-shift analysis of modulated photocurrent technique. It is shown that high hydrogen dilution near the threshold of microcrystallinity leads to a more ordered network structure and to the redistribution of gap states; it gives rise to a small peak at about 0.55 eV and a shoulder at about 1.2 eV below the conduction band edge, which are associated with the formation of microcrystallites embedded in the amorphous silicon host matrix. A concurrent subtle boron compensation is demonstrated to prevent excessive formation of microcrystallinity, and to help promote the growth of the ordered regions and reduce the density of gap defect states, particularly those associated with microcrystallites. Hydrogen-diluted and appropriately boron-compensated a-Si:H films deposited near the threshold of microcrystallinity show the lowest density of the defects in both the annealed and light-soaked states, and hence, the highest performance and stability. (C) 2001 American Institute of Physics.
Resumo:
The concentration of hydroen-indium vacancy complex VInH4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The VInH4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to similar to 10(16) cm(-3) in as-grown liquid encapsulated Czochralski InP. The concentration of the VInH4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. (C) 1998 American Institute of Physics, [S0003-6951(98)04435-0].