72 resultados para MICROFLUIDIC CHIPS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrowetting (EW) is an effective way to manipulate small volume liquid in micro- and nano-devices, for it can improve its wettability. Since the late 1990s, electrowetting-on-dielectric (EWOD) has been used widely in bio-MEMS, lab-on-a-chip, etc. Polydimethlsiloxane (PDMS) is extensively utilized as base materials in the fabrication of biomedical micro- and nano-devices. The properties of thin PDMS films used as dielectric layer in EW are studied in this paper. The experimental results show that the thin PDMS films exhibit good properties in EWOD. As to PDMS films with different thicknesses, a threshold voltage and a hysteresis were observed in the EIWOD experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polydimethylsiloxane ( PDMS) has become the most widely used silicon-based organic polymer in bio-MEMS/NEMS devices. However, the inherent hydrophobic nature of PDMS hinders its wide applications in bio-MEMS/NEMS for efficient transport of liquids. Electrowetting is a useful tool to reduce the apparent contact angle of partially wetting conductive liquids and has been utilized widely in bio-MEMS/NEMS. Our experimental results show that the thin PDMS membranes exhibit good properties in electrowetting-on-dielectric. The electrical instability phenomenon of droplets was observed in our experiment. The sessile droplet lying on the PDMS membrane will lose its stability with the touch of the wire electrode to make the apparent contact angle change suddenly larger than 35 degrees. Contact mode can protect the dielectric layer from electrical breakdown effectively. Electrical breakdown process of dielectric layer was recorded by a high speed camera. It is found experimentally that a PDMS membrane of 4.8 mu m thick will not be destroyed due to the electric breakdown even at 800 V in the contact mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser-induced well-ordered and controllable wavy patterns are constructed in the deposited metal thin film. The micrometer-sized structure and orientation of the wavy patterns can be controlled via scanning a different size of rectangle laser spot on the films. Ordered patterns such as aligned, crossed, and whirled wave structures were designed over large areas. This patterning technique may find applications in both exploring the reliability and mechanical properties of thin films, and fabricating microfluidic devices. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of interactions between two kinds of monoclonal antibodies and SARS virus with a label-free protein array technique were presented in this paper. The performance consists of three parts: a surface modification for ligand immobilization/surface, a protein array fabrication with an integrated microfluidic system for patterning, packaging and liquid handling, and a protein array reader of imaging ellipsometer. This revealed the technique could be used as an immunoassay for qualitative and quantitative detection as wen as kinetic analysis of biomolecule interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid transportation in microfluidic system could be benefit from the slip on solid-liquid interface. Slip length on many kinds of hydrophilic/hydrophobic surfaces have been measured recently. The two common-used experimental methods for boundary slip measurement include: (1) surface force measurement, such as surface force apparatus (SFA), atom force microscope (AFM), and (2) velocity measurement, like microPIV/PTV (Particle image velocimetry / Particle tracking velocimetry), total internal reflection velocimetry (TIRV). However, the measured results are rather scattered, larger measured slip lengths were reported by microPIV/PTV experiments. In this paper, we will investigate the deviations of the measured slip length on smooth hydrophilic surface. After measuring detailed velocity profiles very close to hydrophilic glass wall, we give a discussion on the effects influencing the slip measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid detection and identification of pathogens is important for minimizing transfer and spread of disease. A label-free and multiplex biosensor based on imaging ellipsometry (BIE) had been developed for the detection of phage M13KO7. The surface of silicon wafer is modified with aldehyde, and proteins can be patterned homogeneously and simultaneously on the surface of silicon wafer in an array format by a microfluidic system. Avidin is immobilized on the surface for biotin-anti-M13 immobilization by means of interaction between avidin and biotin, which will serve as ligand against phage M13KO7. Phages M13KO7 are specifically captured by the ligand when phage M13KO7 solution passes over the surface, resulting in a significant increase of mass surface concentration of the anti-M13 binding phage M13KO7 layer, which could be detected by imaging ellipsometry with a sensitivity of 10(9) pfu/ml. Moreover, atomic force microscopy is also used to confirm the fact that phage M13KO7 has been directly captured by ligands on the surface. It indicates that BIE is competent for direct detection of phage M13KO7 and has potential in the field of virus detection. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For efficiently cooling electronic components with high heat flux, experiments were conducted to study the flow boiling heat transfer performance of FC-72 over square silicon chips with the dimensions of 10 × 10 × 0.5 mm3. Four kinds of micro-pin-fins with the dimensions of 30 × 60, 30 × 120, 50 × 60, 50 × 120 μm2 (thickness, t × height, h) were fabricated on the chip surfaces by the dry etching technique for enhancing boiling heat transfer. A smooth surface was also tested for comparison. The experiments were made at three different fluid velocities (0.5, 1 and 2 m/s) and three different liquid subcoolings (15, 25 and 35 K). The results were compared with the previous published data of pool boiling. All micro-pin-fined surfaces show a considerable heat transfer enhancement compared with a smooth surface. Flow boiling can remarkably decrease wall superheat compared with pool boiling. At the velocities lower than 1 m/s, the micro-pin-finned surfaces show a sharp increase in heat flux with increasing wall superheat. For all surfaces, the maximum allowable heat flux, qmax, for the normal operation of LSI chips increases with fluid velocity and subcooling. For all micro-pin-finned surfaces, the wall temperature at the critical heat flux (CHF) is less than the upper limit for the reliable operation of LSI chips, 85◦C. The largest value of qmax can reach nearly 148 W/cm2 for micro-pin-finned chips with the fin height of 120 μm at the fluid velocity of 2 m/s and the liquid subcooling of 35 K. The perspectives for the boiling heat transfer experiment of the prospective micro-pin-finned sur- faces, which has been planned to be made in the Drop Tower Beijing/NMLC in the future, are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biosensor based on imaging ellipsometry (BIE) has been developed and validated in 169 patients for detecting five markers of hepatitis B virus (HBV) infection. The methodology has been established to pave the way for clinical diagnosis, including ligand screening, determination of the sensitivity, set-up of cut-off values (CoVs) and comparison with other clinical methods. A matrix assay method was established for ligand screening. The CoVs of HBV markers were derived with the help of receiver operating characteristic curves. Enzyme-linked immunosorbent assay (ELISA) was the reference method. Ligands with high bioactivity were selected and sensitivities of 1 ng/mL and 1 IU/mL for hepatitis B surface antigen (HBsAg) and surface antibody (anti-HBs) were obtained respectively. The CoVs of HBsAg, anti-HBs, hepatitis B e antigen, hepatitis B e antibody and core antibody were as follows: 15%, 18%, 15%, 20% and 15%, respectively, which were the percentages over the values of corresponding ligand controls. BIE can simultaneously detect up to five markers within 1 h with results in acceptable agreement with ELISA, and thus shows a potential for diagnosing hepatitis B with high throughput.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various hazardous wastes with additives have been vitrified to investigate the formation mechanism of the glassy slag by a 30 kW DC plasma-arc reactor developed by the Institute of Mechanics, Chinese Academy of Sciences. The average temperature in the reaction area is controlled at 1500°C. The chemical compositions of three sorts of fly ashes are analyzed by XRF (X-Ray Fluorescence). Fly ashes with vitrifying additives can be vitrified to form glassy slag, which show that the ratio of the whole oxygen ions to the whole network former ions in glass (R) is appropriate in the range of 2~3 to form durable vitrified slag. In this experiment, the arc power is controlled below 5 kW to inhibit waste evaporation. To enhance the effects of heat transfer to wastes, ferrous powder has been added into the graphite crucible, which aggregates as ingot below the molten silicate after vitrification. The slag fails to form glass if the quenching rate is less than 1 K/min. Therefore, the slag will break into small chips due to the sharp quenching rate, which is more than 100 K/sec.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of a novel surface-enhanced Raman scattering (SERS) substrate with a controllable enhancement factor (EF) using femtosecond laser direct writing on Ag+-doped phosphate glass followed by chemical plating at similar to 40 degrees C. Silver seeds were first photoreduced using a femtosecond laser in a laser-irradiated area and then transformed into silver nanoparticles of suitable size for SERS application in the subsequent chemical plating. Rhodamine 6G was used as a probing molecule to investigate the enhancement effect of a Raman signal on the substrate. Nearly homogenous enhancement of the Raman signal over the Substrate was achieved, and the EF of the substrate was controlled to some extent by adjusting fabrication parameters. Moreover, the ability of forming a SERS platform in an embedded microfluidic chamber would be of great use for establishing a compact lab-on-a-chip device based on Raman analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Si:SbOx films have been deposited by reactive dc-magnetron sputtering from a Sb target with Si chips attached in Ar + O-2 with the relative O-2 content 7%. The as-deposited films contained Sb metal, Sb2O3, SiO, Si2O3 and SiO2. The crystallization of Sb was responsible for the changes of optical properties of the films. The results of the blue laser recording test showed that the films had good writing sensitivity for blue laser beam (406.7 nm), and the recording marks were still clear even if the films were deposited in air 60 days, which demonstrated that doping silicon in SbOx films can improve the stability of SbOx films. High reflectivity contrast of about 36% was obtained at a writing power 6 mW and writing pulse width 300 ns. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An oligonucleotide ligation assay-based DNA chip has been developed to detect single nucleotide polymorphism. Synthesized nonamers, complementary to the flanking sequences of the mutation sites in target DNA, were immobilized onto glass slides through disulfide bonds on their 5' terminus. Allele-specific pentamers annealed adjacent to the nonamers on the complementary target DNA, containing 5'-phosphate groups and biotin labeled 3'-ends, were mixed with the target DNA in tube. Ligation reactions between nonamers and pentamers were carried out on chips in the presence of T4 DNA ligase. Ligation products were directly visualized on chips through enzyme-linked assay. The effect of G:T mismatch at different positions of pentamers on the ligation were evaluated. The results showed that any mismatch between pentamer and the target DNA could lead to the decrease of ligation, which can be detected easily. The established approach was further used for multiplex detection of mutations in rpoB gene of rifampin-resistant Mycobacterium tuberculosis clinical isolates. (C) 2003 Elsevier B.V. All rights reserved.