192 resultados para Dicumyl Peroxide
Resumo:
A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 mu M, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors.
Resumo:
A novel method to fabricate a hydrogen peroxide sensor was developed by immobilizing horseradish peroxidase (HRP) on colloidal An modified ITO conductive glass support. The cleaned glass support was modified with (3-aminopropyl)trimethoxysilane (APTMS) first to yield an interface for the assembly of colloidal An. Then 15 nm colloidal Au particles were chemisorbed onto the amine groups of the APTMS. Finally, HRP was adsorbed onto the surface of the colloidal An. The immobilized HRP displayed excellent electrocatalytical response to the reduction of hydrogen peroxide. The performance and factors influencing the resulted biosensor were studied in detail. The resulted biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 8.0 mumol l(-1), and linear range was from 20.0 mumol l(-1) to 8.0 mmol l(-1). Furthermore, the resulted biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.
Resumo:
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: -0.2 V) was from 1.67 x 10(-5) to 7.40 x 10(-4) M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.
Resumo:
A solid catalyst manganese pyrophosphate based on non-sieves to oxidize benzene to phenol with oxidant hydrogen peroxide has shown good conversion with good selectivity in CH3CN at 65 degrees C investigating water contact angle data of three manganese salts, it is found manganese pyrophosphate has certain repulsive water character. It is further to be confirmed by benzene and phenol adsorption experiments onto catalyst surface by GC. With benzene/H2O2 ratio of 1, the benzene conversion of 13.8% with phenol selectivity of 85.0% was achieved. It is noteworthy that no any products are obtained using manganese pyrophosphate as catalyst in the oxidation of phenol in CH3CN solvent.
Resumo:
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.
Resumo:
A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H2O2 was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H2O2 without electron mediator or promoter, at a potential of +0.10 V versus Ag \ AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N = 3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.
Resumo:
The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new kind of conductive vanadium-17-molybdodiphosphate/graphite/methylsilicate composite was firstly prepared by the sol-gel technique and used as electrode material for the fabrication of amperometric hydrogen peroxide sensor. The remarkable advantage of the sensor is its excellent reproducibility of surface renewal by simple mechanical polishing.
Resumo:
A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
A novel amperometric biosensor for the detection of hydrogen peroxide was described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gave response to hydrogen peroxide in a few seconds with detection limit of 5.0 x 10(-5) M (based on signal:noise = 3). Linear range was upto 0.2 mM. The biosensor exhibited a good stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel amperometric biosensor for the detection of hydrogen peroxide is described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gives response to hydrogen peroxide in a few seconds with detection limit of 5x10(-7) mol (.) L-1 (based on signal : noise=3). Linear range is up to 0.2 mmol (.) L-1.
Resumo:
A hydrogen peroxide biosensor based on sol-gel-derived glasses doped with poly(ester sulfonic acid) Eastman AQ 55D was constructed. Thionine (TH), as a mediator, was incorporated in this matrix by electrostatic force between TH+ and the negatively charged sulfonic acid group in Eastman AQ polymer. Performance and characteristics of the sensor were evaluated with respect to response time, sensitivity and storage stability. The enzyme electrode has a sensitivity of 11.36 muA mM(-1) with a detection limit of 5.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady state current within 20 s. (C) 2001 Elsevier Science B.V. All rights reserved.