163 resultados para Culn(Se1-xSx)2 Thin Films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 films deposited by electron beam evaporation with glancing angle deposition (GLAD) technique were reported. The influence of flux angle on the surface morphology and the microstructure was investigated by scanning electron microscopy. The GLAD TiO2 films are anisotropy with highly orientated nanostructure of the slanted columns. With the increase of flux angle, refractive index and packing density decrease. This is caused by the shadowing effect dominating film growth. The anisotropic structure of TiO2 films results in optical birefringence, which reaches its maximum at the flux angle alpha = 65 degrees. The maximum birefringence of GLAD TiO2 films is higher than that of common bulk materials. It is suggested that glancing angle deposition may offer an effective method to obtain tailorable refractive index and birefringence in a large continuous range. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconia films were prepared by e-beam evaporation, and oxygen plasma treatment was used to modify film properties. Spectrophotometry, x-ray diffractometry (XRD), and atomic force microscopy were used to characterize refractive index, extinction coefficient, rnicrostructure, and surface roughness, respectively. The experimental results indicate that both refractive index and extinction coefficient of the films were reduced slightly after oxygen plasma treatment, with the decrease of intrinsic stress and surface roughness. From XRD spectra, the intensity decrease of the T(110) diffraction peak was clearly observed after the treatment, which was caused by the restructuring of the film atoms. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd: YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LID T of Al2O3 thin film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm(2), but it is increased to 8.98 J/cm(2) after annealing under temperature of 200 degrees C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(110) oriented ZnO thin films were epitaxially prepared on (001) SrTiO3 single crystal substrates by a pulsed laser deposition method. The evolution of structure, surface morphology, and electrical conductivity of ZnO films was investigated on changing the growth temperature. Two domain configurations with 90 degrees rotation to each other in the film plane were found to exist to reduce the lattice mismatch between the films and substrates. In the measured temperature range between 80 K and 300 K, the electrical conductivity can be perfectly fitted by a formula of a (T) = sigma(0) + aT(b/2). implying that the electron-phonon scattering might have a significant contribution to the conductivity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium dioxide thin films were fabricated by ion beam sputtering on Si3N4/SiO2/Si after a post reductive annealing process in a nitrogen atmosphere. X-ray Diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the effects of post annealing temperature on crystallinity, morphology, and composition of the vanadium oxide thin films. Transmission properties of vanadium dioxide thin films were measured by Fourier transform-infrared (FT-IR) spectroscopy. The results showed that the as-deposited vanadium oxide thin films were composed of non-crystalline V2O5 and a tetragonal rutile VO2. After annealing at 400 degrees C for 2 h, the mixed phase vanadium oxide (VOx) thin film changed its composition and structure to VO2 and had a (011) oriented monoclinic rutile structure. When increasing the temperature to 450 degrees C, nano VO2 thin films with smaller grains were obtained. FT-IR results showed that the transmission contrast factor of the nano VO2 thin film was more than 0.99 and the transmission of smaller grain nano VO2 thin film was near zero at its switched state. Nano VO2 thin film with smaller grains is an ideal material for application in optical switching devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-doped ZnO (Zn1-xCoxO) thin films were fabricated by reactive magnetron cosputtering. The processing conditions were carefully designed to avoid the occurrence of Co precipitations. The films are c-axis oriented, and the solubility limit of Co in ZnO is less than 17%, determined by x-ray diffraction. X-ray photoemission spectroscopy measurements show Co ions have a chemical valance of 2+. In this paper, hysteresis loops were clearly observed for Zn1-xCoxO films at room temperature. The coercive field, as well as saturation magnetization per Co atom, decreases with increasing Co content, within the range of 0.07films are nonconductive as x is no more than 17%. Our results clearly demonstrate that ferromagnetism can be realized in Zn1-xCoxO without carrier incorporation. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gd2O3 thin films were deposited on Si (100) substrates at 650degreesC by a magnetron sputtering system under different Ar/O-2 ratios of 6:1, 4:1 and 2:1. The effect of the oxygen concentration on the properties of oxide thin films was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and capacitance-voltage (C-V)measurement. X-ray diffraction shows that the structure of oxide films changed from the monoclinic Gd2O3 phase to cubic Gd2O3 phase when the oxygen concentration increased. According to C-V measurement, the dielectric constant value of the samples deposited at different Ar/O-2 ratios is about 12. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy technique has been performed to investigate the stress induced in as-grown silicon-on-sapphire (SOS), solid-phase-epitaxy (SPE) re-grown SOS, and Si/gamma-Al2O3/Si double-heteroepitaxial thin films. It was demonstrated that the residual stress in SOS film, arising from mismatch and difference of thermal expansion coefficient between silicon and sapphire, was reduced efficiently by SPE process, and that the stress in Si/gamma-Al2O3/Si thin film is much smaller than that of as-grown SOS and SPE upgraded SOS films. The stress decrease for double heteroepitaxial film Si/gamma-Al2O3/Si mainly arises from the smaller lattice mismatching of 2.4% between silicon top layer and the gamma-Al2O3/Si epitaxiial composite substrate, comparing with the large lattice mismatch of 13% for SOS films. It indicated that gamma-Al2O3/Si as a silicon-based epitaxial substrate benefits for reducing the residual stress for further growth of silicon layer, compared with on bulk sapphire substrate. (c) 2005 Elsevier B.V. All rights reserved.