46 resultados para CROWBAR SWITCHES
Resumo:
A 4 x 4 strictly nonblocking thermo-optical switch matrix based on Mach-Zehnder (MZ) switching unit was designed and fabricated in silicon-on-insulator (SOI) wafer. The paired multi-mode interferometers (MMI) were used as power splitters and combiners in MZ structures. The device presents an average insertion loss of 17 dB and an average crosstalk of 16.5 dB. The power consumption needed for operation is reduced to 0.288 W by adding isolating trenches. The switching time of the device is about 15 mu s, which is much faster than that of silica-based switches. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Novel folding 8 x 8 matrix switches based on silicon on insulator were demonstrated. In the design, single-mode rib waveguides and multimode interferences are connected by optimized tapered waveguides to reduce the mode coupling loss between the two types of waveguides. The self-aligned method was applied to the key integrated turning mirrors for perfect positions and low loss of them. A mixed etching process including inductively coupled plasma and chemical etching was employed to etch waveguides and mirrors, respectively. The compact size of the device is only 20 x 3.2 mm(2). The switch element with high switching speed and low power consumption is presented in the matrix. The average insertion loss of the matrix is about -21 dB, and the excess loss of one mirror is measured of -1.4 dB. The worst crosstalk is larger than 21 dB. Experimental results illuminate that some of the main characteristics of optical matrix switches are. developed in the modified design, which is in accord with theoretic analyses.
Resumo:
Silicon-on-insulator technology has been used to fabricate 2 x 2 thermo-optic switches. The switch shows crosstalk of -23.4 dB and extinction ratio of 18.1 dB in the bar-state. The switching speed is less than 30 mus and the power consumption is about 420 mW The measured excess loss is 1.8 dB. These merits make the switch more attractive for applications in wavelength division multiplexing.
Resumo:
This paper reports on the simulation of two 2 x 2 electrooptical switches with different modulation area structures in silicon-on-insulator (SOI). A two-dimensional (2D) semiconductor device simulation tool PISCES-II has been used to analyze the dc and transient behaviors of the two devices. The modeling results show that the switch with an N+-I-P+-I-N+ modulation structure has a much faster response speed than the device with a P+-I-N+ modulation structure, although the former requires slightly stronger injection power.
Resumo:
The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.
Resumo:
We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.
Resumo:
A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.
Resumo:
We put forward a two-terminal valley filter based on a bulk graphene sheet under the modulations of both a local perpendicular magnetic field and a substrate strain. When only one of the two modulations is present, no valley polarization can be generated. A combination of the two modulations leads to a different (but not opposite) shifts of the K and K' valleys, which could be utilized to generate a valley-polarized current. The degree of the valley polarization can be tuned by the strain strength and the inclusion of a scalar potential. The valley polarization changes its polarity as the local magnetic field switches its direction.
Resumo:
Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.
Resumo:
In this paper we introduce a new Half-flash analog switch ADC architecture. And we discuss two methods to design the values of the cascaded resistors which generate the reference voltages. Derailed analysis about the effect of analog switches and comparators on reference voltages, and the methods to set the resistor values and correspond;ng voltage errors are given.
Resumo:
In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.
Resumo:
Enantiomerically pure dinuclear ruthenium complexes with 1,2-dicarbonylhydrazide as a bridging ligand are optically active in the visible and near infrared spectral regions depending on the oxidation states of the metal centers and are useful as an electrochemically driven near infrared chiroptical switch.
Resumo:
The authors developed a time dependent method to study the single molecule dynamics of a simple gene regulatory network: a repressilator with three genes mutually repressing each other. They quantitatively characterize the time evolution dynamics of the repressilator. Furthermore, they study purely dynamical issues such as statistical fluctuations and noise evolution. They illustrated some important features of the biological network such as monostability, spirals, and limit cycle oscillation. Explicit time dependent Fano factors which describe noise evolution and show statistical fluctuations out of equilibrium can be significant and far from the Poisson distribution. They explore the phase space and the interrelationships among fluctuations, order, amplitude, and period of oscillations of the repressilators. The authors found that repressilators follow ordered limit cycle orbits and are more likely to appear in the lower fluctuating regions. The amplitude of the repressilators increases as the suppressing of the genes decreases and production of proteins increases. The oscillation period of the repressilators decreases as the suppressing of the genes decreases and production of proteins increases.
Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant
Resumo:
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the or-helix content in the CD spectra, indicate more open conformation of the protein around the heme. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Two stable redox couples, accompanying clear color switches between yellow green and blue, can be observed when the VHCF-coated film platinum electrodes are cyclic potential scanned in 3.6 M H2SO4 and 0.2 M K2SO4 electrolyte solution. Electrochemical results and in situ Fourier transfer infrared (FT-IR) spectroscopy demonstrate that the redox reaction of the electroactive iron sites is related to the first redox couple (E-1/2 = 0.81 V) while the second redox couple (E-1/2 = 1.01 V) is due to the redox reactions of the electroactive vanadyl ions. Under the proper conditions, such as in high acidic solutions or thin films (deposition time is less than 2 min) and so on, the third redox couple (E-1/2 = 0.89-0.94 V) can be observed on the cyclic voltammograms, which originates from the redox reactions of the interstitial vanadyl ions. This electrochemical reaction mechanism is investigated by in situ probe beam deflection technique, exchange of K+ ions accompanies with redox reaction of the iron sites, but for redox reaction of the vanadyl ions, both H+ ions, K+ ions and water molecules are involved.