57 resultados para Aleutian Islands Alaska
Resumo:
A constant amount of Ge was deposited on strained GexSi1-x layers of approximately the same thickness but with different alloy compositions, ranging from x = 0.06 to x = 0.19. From their atomic-force-microscopy images, we found that both the size and density of Ge islands increased with the Ge composition of the strained layer. By conservation of mass, this implies that these islands must incorporate material from the underlying strained layer. (C) 2000 American Institute of Physics. [S0003-6951(00)03529-4].
Resumo:
The effect of Si overgrowth on the structural and luminescence properties of strained Ge layer grown on Si(1 0 0) is studied. Capping Si leads to the dissolution of Ge island apex and reduced island height. The structural changes in island shape, especially in chemical composition during Si overgrowth have a large effect on the PL properties. The integrated PL intensity of Ge layer increases and there are large blue shifts in peak energies after capping Si. The PL spectra from buried Ge layer are consistent with type-II band alignment in SiGe/Si. We show that the PL properties from buried Ge layer may be tailored by modifying the cap layer growth conditions as well as post-growth annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of arsenic clusters in a system of vertically aligned InAs quantum islands on GaAs during thermal annealing under As overpressure has been investigated by transmission electron microscopy (TEM) and Raman scattering. Semicoherent arsenic clusters, identified by TEM examination, have been formed on the surface of the GaAs capping layer. The existence of arsenic precipitates is also confirmed by Raman spectra, showing new peaks from the annealed specimen at 256 and 199 cm(-1). These peaks have been ascribed to A(1g) and E-g Raman active phonons of crystalline arsenic. The phenomenon can be understood by a model of strain-induced selected growth under As overpressure. (C) 1999 American Institute of Physics. [S0003-6951(99)02045-8].
Resumo:
Evolution of the height distribution of Ge islands during in situ annealing of Ge films on Si(1 0 0) has been studied. Island height is found to have a bimodal distribution. The standard deviation of the island height divided by the mean island height, for the mode of larger island size is more than that for the other mode. We suggest that the presence of Ehrlich-Schwoebel barriers, combined with the misfit strain, can lead to the bimodal distribution of island size, the mode of larger island size having narrower base size distribution, but wider height distribution for Ge islands on Si(1 0 0). The bimodal distribution of island size could be stable due to kinetics without necessarily regarding it as minimum-energy configuration. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized InAs islands on (001) GaAs grown by molecular beam epitaxy were annealed and characterized with photoluminescence (PL) and transmission electron microscopy (TEM). The PL spectra from the InAs islands demonstrated that annealing resulted in a blueshift in peak energy, a reduction in intensity, and a narrower linewidth in the PL peak. In addition, the TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 degrees dislocations. The correlation between the changes in the PL spectra and the relaxation of strain in InAs islands was discussed. (C) 1998 American Institute of Physics. [S0003-6951(98)01850-6].
Resumo:
Atomic force microscopy (AFM) measurements of nanometer-sized islands formed by 2 monolayers of InAs by molecular beam epitaxy have been carried out and the scan line of individual islands was extracted from raw AFM data for investigation. It is found that the base widths of nanometer-sized islands obtained by AFM are not reliable due to the finite size and shape of the contacting probe. A simple model is proposed to analyze the deviation of the measured value From the real value of the base width of InAs islands. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A 10-InAs-island-layer vertically coupled quantum dot structure on (001) GaAs was grown and investigated by molecular beam epitaxy and transmission electron microscopy. The result shows that the vertically aligned InAs islands are asymmetrical along the two < 110 > directions on the (001) growth plane. Such an asymmetry in the vertically coupled quantum dot structure can be explained with the chemical polarity in the III-V compound semiconductors.
Resumo:
A promising approach for positioning of InAs islands on (110)GaAs is demonstrated. By combining self-assembly of quantum dots with solid source molecular beam epitaxy (MBE) on cleaved edge of InGaAs/GaAs superlattice (SL), linear alignment of InAs islands on the InGaAs strain layers have been fabricated The cleaved edge of InGaAs/GaAs SL acts as strain nanopattern for InAs selective growth. Indium atoms incident on the surface will preferentially migrate to InGaAs regions where favorable bonding sites are available. The strain nanopattern's effect is studied by the different indium fraction and thickness of InxGa1-xAs/GaAs SL. The ordering of the InAs islands is found to depend on the properties of the underlying InGaAs strain layers.
Resumo:
The effect of thermal annealing of InAs/GaAs quantum dots (QDs) with emission wavelength at 1.3 mu m have been investigated by photoluminescence (PL) and transmission electron microscopy (TEM measurements. There is a dramatic change in the A spectra when the annealing temperature is raised up to 800 degrees C: an accelerated blushifit of the main emission peak of QDs together with an inhomogeneous broadening of the linewidth. The TEM images shows that the lateral size of normal QDs decreases as the annealing temperature is increased, while the noncoherent islands increase their size and densit. A small fraction of the relative large QDs contain dislocations when the annealing temperature increases up to 800 degrees C. The latter leads to the strong decrease of the PL intensity.
Resumo:
The high quality Ge islands material with 1.55 mu m photo-response grown on Sol substrate is reported. Due to the modulation of the cavity formed by the mirrors at the surface and the buried SiO2 interface, seven sharp and strong peaks with narrow linewidth are found. And a 1.55 mu m Ge islands resonant-cavity-enhanced (RCE) detector with narrowband was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching, in a basic solution from the backside of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mu m. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement.
Resumo:
We show that the observed temperature dependence of the photoluminescence (PL) features can be consistently explained in terms of thermally activated carrier transfer processes in a multilayer structure of the self-organized Ge/Si(001) islands. The type II (electron confinement in Si) behavior of the Ge/Si islands is verified. With elevated temperature, the thermally activated electrons and holes enter the Ge islands from the Si and from the wetting layer (WL), respectively. An involvement of the type I (spatially direct) into type II (spatially indirect) recombination transition takes place at a high temperature.
Photoluminescence characterization of 1.3 mu m In(Ga)As/GaAs islands grown by molecular beam epitaxy
Resumo:
1.3 mum wavelength In(Ga)As/GaAs nanometer scale islands grown by molecular beam epitaxy (MBE) were characterized by photoluminescence (PL) and atomic force microscopy (AFM) measurements. It is shown that inhomogeneous broadening of optical emission due to fluctuation of the In0.5Ga0.5As islands both in size and in compositions can be effectively suppressed by introducing a AlAs layer and a strain reduction In0.2Ga0.8As layer overgrown on top of the islands, 1.3mum emission wavelength with narrower line-width less than 20meV at room temperature was obtained.