194 resultados para Active pharmaceutical ingredient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually GaAs/AlGaAs is utilized as an active layer material in laser diodes operating in the spectral range of 800 850 nm. In this work, in addition to a traditional unstrained GaAs/AlGaAs distributed feedback (DFB) laser diode, a compressively strained InGaAlAs/AlGaAs DFB laser diode is numerically investigated in characteristic. The simulation results show that the compressively strained DFB laser diode has a lower transparency carrier density, higher gain, lower Auger recombination rate, and higher stimulated recombination rate, which lead to better a device performance, than the traditional unstrained GaAs/AlGaAs DFB laser diode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using classical constant-pressure molecular dynamics simulations and the force constants model, radial breathing mode (RBM) transition of single-wall carbon nanotubes under hydrostatic pressure is reported. With the pressure increased, the RBM shifts linearly toward higher frequency, and the RBM transition occurs at the same critical pressure as the structural transition. The group theory indicates that the RBMs are all Raman-active; however, due to the effect of the frequency transition and the electronic structure change for tube radial deformation, the Raman intensity of the modes becomes so weak as not to be experimentally detected, which is in agreement with a recent experiment by S. Lebedkin [Phys. Rev. B 73, 094109 (2006)]. Furthermore, the calculated RBM transition pressure is well fitted to the cube of diameter (similar to 1/d(3)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report a simple but effective way to improve the surface morphology of stacked 1.3 mu m InAs/GaAs quantum dot (QD) active regions grown by metal-organic chemical vapor deposition (MOCVD), in which GaAs middle spacer and top separate confining heterostructure (SCH) layers are deposited at a low temperature of 560 degrees C to suppress postgrowth annealing effect that can blueshift emission wavelength of QDs. By introducing annealing processes just after depositing the GaAs spacer layers, the authors demonstrate that the surface morphology of the top GaAs SCH layer can be dramatically improved. For a model structure of five-layer QDs, the surface roughness with the introduced annealing processes (IAPs) is reduced to about 1.3 nm (5x5 mu m(2) area), much less than 4.2 nm without the IAPs. Furthermore, photoluminescence measurements show that inserting the annealing steps does not induce any changes in emission wavelength. This dramatic improvement in surface morphology results from the improved GaAs spacer surfaces due to the IAPs. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers based on MOCVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A near-field scanning optical microscopy (NSOM) system employing a very-small-aperture laser (VSAL) as an active probe is reported in this Letter. The VSAL in our experiment has an aperture size of 300 nmx300 nm and a near-field spot size of about 600 nm. The resolution of the NSOM system with the VSAL can reach about 600 nm, and even 400 nm. Considering the high output power of the VSAL, such a NSOM system is a potentially useful tool for nanodetection, data storage, nanolithography, and nanobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel semiconductor optical amplifier (SOA) optical gate with a graded strained bulk-like active structure is proposed. A fiber-to-fiber gain of 10 dB when the coupling loss reaches 7 dB/factet and a polarization insensitivity of less than 0.9 dB for multiwavelength and different power input signals over the whole operation current are obtained. Moreover, for our SOA optical gate, a no-loss current of 50 to 70 mA and an extinction ratio of more than 50 dB are realized when the injection current is more than no-loss current, and the maximum extinction ratio reaches 71 dB, which is critical for crosstalk suppression. (C) 2003 society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a new superluminescent diodes (SLD) aimed at wide spectrum-quantum dot superluminescent diodes (QD-SLD), which is characterized by the introduction of a self-assembled asymmetric quantum dot pairs active region into conventional SLID structure. We investigated the structure and optical properties of a bilayer sample with different InAs deposition amounts in the first and second layer. We find that the structure of a self-assembled asymmetric quantum dot pairs can operate up to a 150 nm spectral width. In addition, as the first QDs' density can modulate the density of the QDs on the second layer, due to relatively high QDs density of the first layer, we can get the strong PL intensity from a broad range. We think that for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for QW-SLD. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel monomer, (trans)-7-[4-N,N-(di-beta-hydroxyethyl) amino-benzene]-ethenyl-3,5-dinitrothiophene (HBDT), and the corresponding prepolymer, polyurethane were synthesized and characterized. The details of synthesis of the monomer and its further polymerization were presented. The prepolymer and polyurethane exhibited good thermal stability and good solubility in common organic solvents. The d(33) coefficient of the poled films was determined to be 40.3 pm/V. (C) 2000 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a low-power, highly linear, integrated, active-RC filter exhibiting a multi-standard (IEEE 802.11a/b/g and DVB-H) application and bandwidth (3MHz, 4MHz, 9.5MHz) is present. The filter exploits digitally-controlled polysilicon resister banks and an accurate automatic tuning scheme to account for process and temperature variations. The automatic frequency calibration scheme provides better than 3% corner frequency accuracy. The Butterworth filter is design for receiver (WLAN and DVB-H mode) and transmitter (WLAN mode). The filter dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from 2.85-V supply. The dissipation of calibration consumes 2mA. The circuit has been fabricated in a 0.35um 47-GHz SiGe BiCMOS technology, the receiver and transmitter occupy 0.28-mm(2) and 0.16-mm(2) (calibration circuit excluded), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the large negative lateral displacements of TE polarized light beams reflected from or transmitted through an active slab surrounded by transparent medium. The large negative displacements can be achieved when the incidence angle of the beam is less than but close to the critical angle for total reflection. It is also shown that both the reflectivity and transmissivity of the beam that correspond to the large negative displacements can be enhanced by active medium. These phenomena may lead to convenient measurements and interesting applications in optical devices. (c) 2006 Elsevier B.V. All rights reserved.