733 resultados para 100 GAAS
Resumo:
Epitaxial layers of cubic GaN have been grown by metalorganic vapor-phase epitaxy (MOVPE) with Si-doping carrier concentration ranging from 3 x 10(18) to 2.4 x 10(20)/cm(3). Si-doping decreased the yellow emission of GaN. However, the heavily doped n-type material has been found to induce phase transformation. As the Si-doping concentration increases, the hexagonal GaN nanoparticles increase. Judged from the linewidth of X-ray rocking curve, Si-doping increases the density of dislocations and stacking faults. Based on these observations, a model is proposed to interpret the phase transformation induced by the generated microdefects, such as dislocations and precipitates, and induced stacking faults under heavy Si-doping. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
Cubic AlGaN films were grown on GaAs(100) substrates by MOVPE. Scanning electron microscope and photoluminescence were used to analyze the surface morphology and the crystalline quality of the epitaxial layers. We found that both NH, and TEGa fluxes have a strong effect on the surface morphology of AlGaN films. A model for the lateral growth mechanism is presented to qualitatively explain this effect. The content of hexagonal AlGaN in the cubic AlGaN films was also related to the NH3 flux. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized InAs islands on (001) GaAs grown by molecular beam epitaxy were annealed and characterized with photoluminescence (PL) and transmission electron microscopy (TEM). The PL spectra from the InAs islands demonstrated that annealing resulted in a blueshift in peak energy, a reduction in intensity, and a narrower linewidth in the PL peak. In addition, the TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 degrees dislocations. The correlation between the changes in the PL spectra and the relaxation of strain in InAs islands was discussed. (C) 1998 American Institute of Physics. [S0003-6951(98)01850-6].
Resumo:
Cubic GaN films were grown on GaAs(1 0 0) substrates by low-pressure metalorganic vapor-phase epitaxy at high temperature. We have found a nonlinear relation between GaN film thickness and growth timer and this nonlinearity becomes more obvious with increasing growth temperature. We assumed it was because of Ga diffusion through the GaN film, and developed a model which agrees well with the experimental results. These results raise questions concerning the role of Ga diffusion through the GaN film, which may affect the electrical and optical properties of the material. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.
Resumo:
In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest [110] directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation, A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.
Resumo:
Space ordered 1.3μm self-assembled InAs QDs are grown on GaAs(100) vicinal substrates by MOCVD. Photoluminescence measurements show that the dots on vicinal substrates have a much higher PL intensity and a narrower FWHM than those of dots on exact substrates, which indicates better material quality. To obtain 1.3μm emissions of InAs QDs, the role of the so called InGaAs strain cap layer (SCL) and the strain buffer layer (SBL) in the strain relaxation process in quantum dots is studied. While the use of SBL results only in a small change of emission wavelength,SCL can extend the QD's emission over 1.3μm due to the effective strain reducing effect of SCL.
Resumo:
利用MOCVD生长技术在GaAs(100)衬底上生长了高质量的立方相AlGaN薄膜。通过光致发光(PL)、扫描电镜(SEM)分析了不同NH_3流量、不同生长温度对AlGaN外延层的结晶质量和表面形貌的影响。发现相对高的NH_3流量和相对高的生长温度可以提高AlGaN外延层的结晶质量。
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入