520 resultados para intermediate energy heavy-ion beam
Resumo:
Large-area concave refractive microlens arrays, or concave template structures, and then the non-refractive-index-gradient type of planar refractive microlens arrays in InP and quartz substrates, are fabricated utilizing the method consisting of conventional UV photolithography, thermal shaping of concave photoresist microlenses, etching with an argon ion beam of large diameter, and filling or growing optical medium structures onto the curved surfaces of preshaped concave templates. Several key conditions for fabricating concave and also planar microlenses are discussed in detail. The concave structures obtained are characterized by scanning electron microscope and surface profile measurements. The far-field optical characteristics of quartz/ZrO2 planar refractive microlens arrays have been acquired experimentally. (c) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Vanadium dioxide thin films were fabricated by ion beam sputtering on Si3N4/SiO2/Si after a post reductive annealing process in a nitrogen atmosphere. X-ray Diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the effects of post annealing temperature on crystallinity, morphology, and composition of the vanadium oxide thin films. Transmission properties of vanadium dioxide thin films were measured by Fourier transform-infrared (FT-IR) spectroscopy. The results showed that the as-deposited vanadium oxide thin films were composed of non-crystalline V2O5 and a tetragonal rutile VO2. After annealing at 400 degrees C for 2 h, the mixed phase vanadium oxide (VOx) thin film changed its composition and structure to VO2 and had a (011) oriented monoclinic rutile structure. When increasing the temperature to 450 degrees C, nano VO2 thin films with smaller grains were obtained. FT-IR results showed that the transmission contrast factor of the nano VO2 thin film was more than 0.99 and the transmission of smaller grain nano VO2 thin film was near zero at its switched state. Nano VO2 thin film with smaller grains is an ideal material for application in optical switching devices.
Resumo:
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at chi(c) = 50% to 2.1 at chi(c) = 90%. Furthermore, the relationship between n and rho for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter gamma is determined to be 2.05.
Resumo:
We have fabricated surface plasmon modulated nano-aperture vertical-cavity surface-emitting lasers (VCSELs) from common 850 nm VCSELs using focus ion beam etching with Ga+ ion source. The far-field output power is about 0.3 mW at a driving current of 15 mA with a sub-wavelength aperture surrounded by concentric periodic grooves. The enhancement of transmission intensity can be explained by diffraction and enhanced fields associated with surface plasmon. This structure also exhibits beaming properties.
Resumo:
Two-dimensional photonic crystals in near infrared region were fabricated by using the focused ion beam ( FIB) method and the method of electron-beam lithography (EBL) combined with dry etching. Both methods can fabricate perfect crystals, the method of FIB is simple,the other is more complicated. It is shown that the material with the photonic crystal fabricated by FIB has no fluorescence,on the other hand, the small-lattice photonic crystal made by EBL combined with dry etching can enhance the extraction efficiency two folds, though the photonic crystal has some disorder. The mechanisms of the enhanced-emission and the absence of emission are also discussed.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The violet/blue PL at room temperature and lower temperature was observed from the CeO2 thin film. After the analysis of crystal structure and valence in the compound was carried out by the XRD and XPS technique, it was inferred that the origin of CeO2 PL was due to the electrons transition from Ce4f band to O2p band and the defect level to O2p band. And these defects levels were located in the range of 1 eV around Ce4f band.
Resumo:
A model for analyzing point defects in compound crystals was improved. Based on this modified model, a method for measuring Mn content in GaMnAs was established. A technique for eliminating the zero-drift-error was also established in the experiments of X-ray diffraction. With these methods, the Mn content in GaMnAs single crystals fabricated by the ion-beam epitaxy system was analyzed.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied front tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.
Resumo:
A novel process of room temperature ion beam sputtering deposition of vanadium oxide films and low temperature post annealing for uncooled infrared detectors was proposed in this work. VOx thin films with relatively low square resistance (70 K Omega / square) and large temperature coefficient of resistance (more than 3%/K) at room temperature were fabricated using this low temperature process which was very compatible with the process of uncooled infrared detectors based on micromachined technology. Furthermore, chemical composition and film surface have been characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results showed that the main composition of the processed thin films was V2O5 and the thin films were in the process of crystallization.
Resumo:
A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.
Resumo:
Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.
Resumo:
介绍了一种利用离子束外延(Ion-beam Epitaxy, IBE)技术制备生长高纯稀土功能薄膜的新方法. 以纯度要求不高的低成本稀土氯化物为原材料来产生大束流稀土元素离子, 通过准确控制双束合成或单束浅结注入掺杂的同位素纯低能离子的能量、束斑形状、沉积剂量与配比及生长温度, 在超高真空生长室内实现了稀土功能薄膜的高纯生长和低温优质外延. 文中除了对新方法的技术特点、实施方式和应注意的关键技术进行了阐述, 还结合CeO2, Gd2O3, GdxSi1-x等薄膜的制备研究, 讨论了离子的束流密度、剂量配比、能量和生长温度等生长参数对成膜质量的影响.
Resumo:
A windowed very-small-aperture laser 9VSAL0 source for use in high-resolution near field optical data storage is fabricated. The windowed regions are introduced to avoid shorting the pn junction with metal coating and suppress the COD effect. It facilitates producing VSAL by simplified technology and improves the laser performance. A VSAL with 400nm small sperture is demonstrated by focused ion beam (FIB0 and the output power is 0.3mW at 31mA.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.
Resumo:
Ni/SiO2 interface were irradiated at room temperature with 308 MeV Xe ions to 1×1012,5×1012 Xe/cm2 and 853 MeV Pb ions to 5×1011 Pb/cm2,respectively.These samples were analyzed using Rutherford Backscattering Spectrometry(RBS) and X-ray diffraction spectroscopy(XRD),from which the intermixing and phase change were investigated.The obtained results show that both Xe-and Pb-ions could induce diffusion of Ni atoms to SiO2 substrates and result in intermixing of Ni with SiO2.Furthermore,1.0×1012 Xe/cm2 irradiat...中文摘要:在室温下用308 MeV的Xe离子和853 MeV的Pb离子辐照Ni/SiO2样品,用卢瑟福背散射和X射线衍射技术对样品进行了分析。通过分析Ni/SiO2样品中元素成分分布和结构随离子辐照剂量和电子能损的变化,探索了离子辐照在Ni/SiO2样品中引起的界面原子混合与结构相变现象。实验结果显示,Xe和Pb离子辐照均能引起明显的Ni原子向SiO2基体的扩散并导致界面附近Ni,Si和O原子的混合。实验观测到低剂量Xe离子辐照可产生NiSi2相,而高剂量Xe离子辐照则导致了Ni3Si和NiO相的形成。根据热峰模型,Ni原子的扩散和新相的形成可能由沿离子入射路径强电子激发引起的瞬间热峰过程驱动。