502 resultados para Single InAs quantum dot
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then,the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration,~20ns, bulk diffusion is forbidden, and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20~25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 × 10~(10)cm~(-2). The surface morphology evolution is investigated by AFM.
Resumo:
Quantum dot infrared photodetectors (QDIP) are in the center of research interest nowadays. However the real QDIP is inferior to those predicted in theory, in which the dot density is much higher than those reported. Through optimizing the growth conditions, we realized the control of high-density quantum dot growth. This will be very useful for future QDIP development.
Resumo:
Self-organized InAs quantum; dots sheets are grown on GaAs(100) substrate and tapped by 80nm GaAs layer with molecular beam epitaxy. Samples were annealed and characterized with Raman spectra, transmission electron microscopy (TEM) and photolumincscence (PL). The Raman spectra indicates arsenic clusters in the GaAs capping layer. The TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 dislocations. In addition, the structural changes also lead to the changes of the PL spectra from me InAs islands. Their correlation was discussed, Our results suggest:est that annealing may be used to intentionally modify me properties of self-organized InAs islands on GaAs.
Resumo:
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
This paper describes the design and fabrication process of a two-dimensional GaAs-based photonic crystal nanocavity with InAs quantum dots (QDs) emitters and analyzes the optical characteristics of cavity modes at room temperature. The micro-luminescence spectrum recorded from the nanocavities exhibits a narrow optical transition at the lowest order resonance wavelength of about 1137 nm with about 1 nm emission linewidth. In addition, the spectra of photonic crystal nanocavities processed under different etching conditions show that the verticality of air hole sidewall is an important factor determing the luminescence characteristics of photonic crystal nanocaivties. Finally,,the variance of resonant modes is also discussed as a function of r/a ratio and will be used in techniques aimed at improving the probability of achieving spectral coupling of a single QD to a cavity mode.
Resumo:
The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively.
Resumo:
MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.
Resumo:
The nanocrystals of CeF3 with the hexagonal structure and different morphologies such as the disk, the rod, and the dot have been successfully synthesized via a mild ultrasound assisted route from an aqueous solution of cerium nitrate and different fluorine sources (KBF4, NaF, NH4F). The use of different fluorine sources has a remarkable effect on the morphology of the final product. The luminescence and UV-vis absorption properties of CeF3 nanocrystals with different morphologies have been investigated. Compared with other shape nanocrystals, the luminescence intensity of the disklike nanocrystals is obviously enhanced. It is suggested that the function-improved materials could be obtained by tailoring the shape of the CeF3 nanocrystals.
Resumo:
We propose a simple method to detect the relative strength of Rashba and Dresselhaus spin-orbit interactions in quantum wells (QWs) without relying on the directional-dependent physical quantities. This method utilizes the two different critical gate voltages that leading to the remarkable signals of SU(2) symmetry, which happens to reflect the intrinsic-structure-inversion asymmetry of the QW. We support our proposal by the numerical calculation of in-plane relaxation times based on the self-consistent eight-band Kane model. We find that the two different critical gate voltages leading to the maximum spin-relaxation times [one effect of the SU(2) symmetry] can simply determine the ratio of the coefficients of Rashba and Dresselhaus terms. Our proposal can also be generalized to extract the relative strengths of the spin-orbit interactions in quantum-wire and quantum-dot structures.
Resumo:
The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures' center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices.
Resumo:
Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390 nm) to blue (468 nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.
Resumo:
Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of remarkable new features are found. The work would, in particular, highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.