604 resultados para PARABOLIC QUANTUM-WELL
Resumo:
We investigated the effects of concomitant In- and N-incorporation on the photoluminescence (PL) of GaInNAs grown by molecular beam epitaxy. In comparison with the N-free GaInAs epilayer, the PL spectra of the GaInNAs epilayer exhibit an anomalous S-shape temperature dependence of dominant luminescence peak. Through further careful inspection, two PL peaks are clearly discerned and are associated with the interband excitonic recombinations and excitons bound to N-induced isoelectronic impurity states, respectively. By comparing the PL spectra of GaInNAs/ GaAs quantum wells (QWs) with those of In-free GaNAs/GaAs QWs grown under similar conditions, it is found that the concomitant In- and N-incorporation reduces the density of impurities and has an effect to improve the intrinsic optical transition of GaInNAs, but also enhance the N-induced clustering effects. At last, we found that rapid thermal annealing can significantly reduce the density of N-induced impurities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A SiGe/Si multiple-quantum-well resonant-cavity-enhanced (RCE) photodetector for 1.3 mum operation was fabricated using bonding reflector process. A full width at half maximum (FWHM) of 6 nm and a quantum efficiency of 4.2% at 1314 nm were obtained. Compared to our previously reported SiGe RCE photodetectors fabricated on separation-by-implanted-oxygen wafer, the mirrors in the device can be more easily fabricated and the device can be further optimized. The FWHM is expected to be less than 1 nm and the detector is fit for density wavelength division multiplexing applications. (C) 2002 American Institute of Physics.
Resumo:
By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure.
Resumo:
The present status and future prospects of functional information materials, mainly focusing on semiconductor microstructural materials, are introduced first in this paper. Then a brief discussion how to enhance the academic level and innovation capability of research and development of functional information materials in China are made. Finally the main problems concerning the studies of materials science and technology are analyzed, and possible measures for promoting its development are proposed.
Resumo:
A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.
Photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer
Resumo:
The photoluminescence spectra of the single delta -doped AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer were studied. There are two peaks in the PL spectra of the structure corresponding to two sub-energy levels of the InGaAs quantum well. It was found that the photoluminescence intensity ratio of the two peaks changes with the spacer thickness of the pseudomorphic HEMTs. The reasons were discussed. The possible use of this phenomenon in optimization of pseudomorphic HEMTs was also proposed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We report one top-illumination and one bottom-illumination SiGe/Si multiple quantum-well (MQW) resonant-cavity-enhanced (RCE) photodetector fabricated on a separation-by-implanted-oxygen (SIMOX) wafer operating near 1300 nm. The buried oxygen layer in SIMOX is used as a mirror to form a vertical cavity with the silicon dioxide/silicon Bragg reflector deposited on the top surface. A peak responsivity with a reverse bias of 5 V is measured 10.2 mA/W at 1285 nm, a full width at half maximum of 25 nm for the top-illumination RCE photodetector, 19 mA/W at 1305 nm, and a full width at half maximum of 14 nm for the bottom-illumination one. The external quantum efficiency of the bottom-illumination RCE photodetector is up to 2.9% at 1305 nm, with a reverse bias of 25V. The responsivity of the bottom-illumination RCE photodetector is improved by two-fold compared with that of the top-illumination one. (C) 2001 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.
Resumo:
Infrared absorption spectroscopy, optical transient current spectroscopy (OTCS), and photoluminescence (PL) spectroscopy are used to investigate the annealing induced evolution of defects in low-temperature (LT)-grown GaAs-related materials. Two LT samples of bulk GaAs (sample A) and GaAs/AlxGa1-xAs multiple-quantum-well. (MQW) structure (sample B) were grown at 220 and 320 degreesC on (001) GaAs substrates, respectively. A strong defect-related absorption band has been observed in both as-grown samples A and B. It becomes weaker in samples annealed at temperatures above 600 degreesC. In sample A, annealed in the range of 600-800 degreesC, a large negative decay signal of the optical transient current (OTC) is observed in a certain range of temperature, which distorts deep-level spectra measured by OTCS, making it difficult to identify any deep levels. At annealing temperatures of 600 and 700 degreesC, both As-Ga antisite and small As cluster-related deep levels are identified in sample B. It is found that compared to the As cluster, the As-Ga antisite has a larger activation energy and carrier capture rate. At an annealing temperature of 800 degreesC, the large negative decay signal of the OTC is also observed in sample B. It is argued that this negative decay signal of the OTC is related to large arsenic clusters. For sample B, transient PL spectra have also been measured to study the influence of the, defect evolution on optical properties of LT GaAs/AlxGa1-xAs MQW structures. Our results clearly identify a defect evolution from AS(Ga) antisites to arsenic clusters after annealing.
Resumo:
A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.
Resumo:
1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The temperature dependence of polaron cyclotron resonance mass in GaAs/AlGaAs heterostructures is reinvestigated theoretically. By taking into account the electron-longitudinal-optic phonon interaction with temperature-dependent many-body effects, the conduction band non-parabolicity, and the influence of nonzero magnetic field, a good agreement with experiment is obtained.
Resumo:
This paper is a review of research and development on semiconductor materials, which covers main scientific activities in this field. The present status acid future prospects of studies on semiconductor materials, such as silicon crystals, GaAs related III-V compound semiconductor materials and GaAs, InP and silicon based quantum well and superlattice materials, quantum wires and quantum dots materials, microcavity and photonic crystals, materials for quantum computation and wide band gap materials, are briefly discussed.
Resumo:
We report on a Si1-xGex/Si multiple quantum-well resonant-cavity-enhanced (RCE) photodetector with a silicon-on-oxide reflector as the bottom mirror operating near 1.3 mu m. The breakdown voltage of the photodetector is above 18 V and the dark current density at 5 V reverse bias is 12 pA/mu m(2). The RCE photodetector shows enhanced responsivity with a clear peak at 1.285 mu m and the peak responsivity is measured around 10.2 mA/W at a reverse bias of 5 V. The external quantum efficiency at 1.3 mu m is measured to be 3.5% under reverse bias of 16 V, which is enhanced three- to fourfold compared with that of a conventional p-i-n photodetector with a Ge content of 0.5 reported in 1995 by Huang [Appl. Phys. Lett. 67, 566 (1995)]. (C) 2000 American Institute of Physics. [S0003-6951(00)00628-8].