532 resultados para chemical vapor transport


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lateral epitaxial overgrowth of GaN was carried out by low-pressure metalorganic chemical vapor deposition, and the cross section shape of the stripes was characterized by scanning electron microscopy. Inclined {11-2n} facets (n approximate to 1-2.5) were observed in the initial growth, and they changed gradually into the vertical {11-20} sidewalls in accordance with the process of the lateral overgrowth. A model was proposed utilizing diffusion equations and boundary conditions to simulate the concentration of the Ga species constituent throughout the concentration boundary layer. Solutions to these equations are found using the two-dimensional, finite element method. We suggest that the observed evolution of sidewall facets results from the variation of the local V/III ratio during the process of lateral overgrowth induced by the lateral supply of the Ga species from the SiNx mask regions to the growing GaN regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type-II SiGe/Si MQWs (Multi-Quantum Wells) and Self-Organized Ge/Si Islands were successfully grown by a homemade ultra-high vacuum/chemical vapor deposition (UHV/CVD) system. Growth characteristics and PL (photoluminescence) spectra at different temperature were measured. It demonstrated that some accumulation of carriers in the islands results in the increase of the integrated PL intensity of island-related at a certain temperature range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical band gap (E-g) of the boron (B)-doped hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated using plasma enhanced chemical vapor deposition (PECVD) was investigated in this work. The transmittance of the films were measured by spectrophotometric and the E-g was evaluated utilizing three different relations for comparison, namely: alphahnu=C(hnu-E-g)(3), alphahnu=B-0(hnu-E-g)(2), alphahnu=C-0(hnu-E-g)(2). Result showed that E-g decreases with the increasing of Boron doping ratio, hydrogen concentration, and substrate's temperature (T-s), respectively. E-g raises up with rf power density (P-d) from 0.45W.cm(-2) to 0.60w.cm(-2) and then drops to the end. These can be explained for E-g decreases with disorder in the films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitaxial lateral overgrown (ELO) cubic GaN (c-GaN) on SiO2 patterned GaN/GaAs(0 0 1) substrates by metalorganic vapor phase epitaxy was investigated using transmission electron microscopy and X-ray diffraction (XRD) measurements. The density of stacking faults (SFs) in ELO c-GaN was similar to6 x 10(8) cm(-2), while that in underlying GaN template was similar to5 x 10(9) cm(-2). XRD measurements showed that the full-width at half-maximum of c-GaN (0 0 2) rocking curve decreased from 33 to 17.8 arcmin, indicating the improved crystalline quality of ELO c-GaN. The mechanism of SF reduction in ELO c-GaN was also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A set of a-SiOx:H (0.52 < x < 1.58) films are fabricated by plasma-enhanced-chemical-vapor-deposition (PECVD) method at the substrate temperature of 250degreesC. The microstructure and local bonding configurations of the films are investigated in detail using micro-Raman scattering, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). It is found that the films are structural inhomogeneous, with five phases of Si, Si2O:H, SiO:H, Si2O3:H and SiO2 that coexist. The phase of Si is composed of nonhydrogenated amorphous silicon (a-Si) clusters that are spatially isolated. The average size of the clusters decreases with the increasing oxygen concentration x in the films. The results indicate that the structure of the present films can be described by a multi-shell model, which suggests that a-Si cluster is surrounded in turn by the subshells Of Si2O:H, SiO:H, Si2O3:H, and SiO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-sheet InGaN/GaN quantum dots (QDs) were grown successfully by surface passivation processing and low-temperature growth in metalorganic chemical vapor deposition. This method based on the principle of increasing the energy barrier of adatom hopping by surface passivation and low-temperature growth, is quite different from present methods. The InGaN quantum dots in the first layer of about 40-nm-wide and 15-nm-high grown by this method were revealed by atomic force microscopy. The InGaN QDs in upper layer grew bigger. To our knowledge, the current-voltage characteristics of multi-sheet InGaN/GaN QDs were measured for the fist time. Two kinds of resonance-tunneling-current features were observed which were attributed to the low-dimensional localization effect. Some current peaks only appeared in positive voltage for sample due to the non-uniformity of the QDs in the structure. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heteroepitaxial growth of n-type and p-type 3C-SiC on (0001) sapphire substrates has been performed with a supply of SiH4+C2H4+H-2 system by introducing ammonia (NH3) and diborane (B2H6) precursors, respectively, into gas mixtures. Intentionally incorporated nitrogen impurity levels were affected by changing the Si/C ratio within the growth reactor. As an acceptor, boron can be added uniformly into the growing 3C-SiC epilayers. Nitrogen-doped 3C-SiC epilayers were n-type conduction, and boron-doped epilayers were p-type and probably heavily compensated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Good quality hydrogenated protocrystalline silicon films were successfully prepared by radio frequency plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios (R = ([H-2]/[SiH4]) from 10 to 100). The photosensitivity of the films is up to 10(6) under the light intensity of 50mW.cm(-2). The microstructure of the films was studied by micro-region Raman scattering spectra at room temperature. The deconvolution of the Raman spectra by Gaussion functions shows that the films deposited under low hydrogen dilution ratios (R < 33) exhibit typical amorphous properties, while the films deposited under high hydrogen dilution ratios (R > 50) possess a diphasic structure, with increasing crystalline volume fraction with R. The size of the crystallites in the diphasic films is about 2.4 mm, which was deduced from the phonon confinement model. The intermediate range order of the silicon film increases with increasing hydrogen dilution ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Si-based nanomaterials are some new photoeletronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e. g. Si light emitting diode, Si laser and integrated Si-based photoelectronics. Among them are nano-scale porous silicon (ps), Si nanocrystalline embedded SiO2 (SiOx, x < 2.0) matrices, Si nanoquantum dot and Si/SiO2 superlattice, etc. At present, there are various indications that if these materials can achieve efficient and stable luminescence, which are photoluminescence (PL) and electroluminescence (EL), it is possible for them to lead to a new informational revolution in the early days of the 21st century. In this article, we will mainly review the progress of study on Si-based nanomaterials in the past ten years. The involved contents are the fabricated methods, structural characterizations and light emitting properties. Finally, we predicate the developed tendency of this field in the following ten years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural characteristic of cubic GaN (C-GaN) nucleation layers on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition was in detail investigated first by X-ray diffraction (XRD) measurements, using a Huber five-circle diffractometer and an intense synchrotron X-ray source. The XRD results indicate that the C-GaN nucleation layers are highly crystallized. Phi scans and pole figures of the (1 1 1) reflections give a convincing proof that the GaN nucleation layers show exactly cubic symmetrical structure. The GaN(1 1 1) reflections at 54.74degrees in chi are a measurable component, however (002) components parallel to the substrate surface are not detected. Possible explanations are suggested. The pole figures of {1 0 (1) over bar 0} reflections from H-GaN inclusions show that the parasitic H-GaN originates from the C-GaN nucleation layers. The coherence lengths along the close-packed [1 1 1] directions estimated from the (1 1 1) peaks are nanometer order of magnitude. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A kind of hydrogenated diphasic, silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic and microstructural properties of the films have been investigated by the constant photocurrent method (CPM), Raman scattering and nuclear magnetic resonance (NMR). Our experimental results and corresponding analyses showed that the diphasic films, incorporated with a subtle boron compensation, could gain both the fine photosensitivity and high stability, provided the crystalline fraction (f) was controlled in the range of 0 < f < 0.3. When compared with the conventional hydrogenated amorphous silicon (a-Si:H), the diphasic films are more ordered and robust in the microstructure, and have a less clustered phase in the Si-H bond configurations. (C) 2002 Elsevier Science Ltd. All rights reserved.