110 resultados para smart room
Resumo:
ZnO/ITO/ZnO sandwich structure films were fabricated. The effects of buffer layer on the structure and optical properties of ZnO films were investigated by x-ray diffraction (XRD), photoluminescence, optical transmittance, and absorption measurements. XRD spectra indicate that a buffer layer has the effects of lowering the grain orientation of ZnO films and increasing the residual stresses in the films. The near-band-edge emissions of ZnO films deposited on both single indium tin oxide (ITO) buffer and ITO/ZnO double buffers are significantly enhanced compared with that deposited on a bare substrate due to the quantum confinement effect. (C) 2006 American Institute of Physics.
Resumo:
Under normal incidence of circularly polarized light at room temperature, a charge current with swirly distribution has been observed in the two-dimensional electron gas in Al0.25Ga0.75N/GaN heterostructures. We believe that this anomalous charge current is produced by a radial spin current via the reciprocal spin Hall effect. It suggests a new way to research the reciprocal spin Hall effect and spin current on the macroscopic scale and at room temperature.
Resumo:
This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.
Resumo:
In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.
Resumo:
Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5 mu m x 800 mu m ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110mA and 10.5V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12 degrees and 32 degrees, respectively.
Resumo:
We fabricate and investigate two-dimensional photonic crystal H3 microcavities in an InGaAsP slab. The lasing action at room temperature is observed. The lasering threshold is 7mW under the pulsed pump of 0.75% duty cycle. The Q factor and the lasing mode characteristics are simulated by three-dimensional finite difference time domain method. The simulation result matches well with the experiment.
Resumo:
The hole-mediated ferromagnetism in (In,Mn)As quantum dots is investigated using the k center dot p method and the mean field model. It is found that the (In,Mn)As quantum dot can be ferromagnetic at room temperature when there is one hole in the dot. For the spherical quantum dots, the Curie temperature decreases as the diameter increases, and increases as the effective composition of magnetic ions increases. It is interesting to find that the (In,Mn)As oblate quantum dot has highly anisotropic Zeeman splitting and ferromagnetism due to the spin-orbit coupling effect, which can be used as an uniaxial spin amplifier. (c) 2008 American Institute of Physics.
Resumo:
A Ge/Si heterojunction light emitting diode with a p(+)-Ge/i-Ge/N+-Si structure was fabricated using the ultrahigh vacuum chemical vapor deposition technology on N+-Si substrate. The device had a good I-V rectifying behavior. Under forward bias voltage ranging from 1.1 to 2.5 V, electroluminescence around 1565 nm was observed at room temperature. The mechanism of the light emission is discussed by the radiative lifetime and the scattering rate. The results indicate that germanium is a potential candidate for silicon-based light source material. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3216577]
Resumo:
We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.
Resumo:
A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.
Resumo:
Diluted magnetic nonpolar GaN Mn films have been fabricated by implanting Mn ions into nonpolar aplane (1 1 (2) over bar 0) p-type GaN films and a subsequent rapid thermal annealing process. The ferromagnetism properties of the films were studied by means of superconducting quantum interference device (SQUID). Clearly in-plane magnetic anisotropy characteristics of the sample at 10 K were revealed with the direction of the applied magnetic field rotating along the in-plane [0 0 0 1]-axis. Moreover, obvious ferromagnetic properties of the sample up to 350 K were detected by means of the temperature-dependent SQUID. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ferromagnetic properties of Mn-implanted wurtzite AlxIn1-xN/GaN thin films grown by metal organic chemical vapor deposition (MOCVD) were observed using a quantum design superconducting quantum interference device (SQUID) magnetometer. Hysteresis behavior with a reasonably high saturation magnetic moment at room temperature for all the samples was noted, Two optical thresholds were observed at 1.58 and 2.64 eV, which are attributed to internal transition (E-5 -> T-5(2)) of Mn3+ (d(4)) and hole emission from the neutral Mn acceptor level to the valence band respectively. Bound magnetic polaron formation is considered to be the origin of ferromagnetism in our samples. (c) 2009 The Japan Society of Applied Physics