207 resultados para oxidation in low temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study of the low-temperature oxidation of CO was conducted over Pd/TiO2, Pd/CeO2, and Pd/CeO2-TiO2 pretreated by a series of calcination and reduction processes. The catalysts were characterized by N-2 adsorption, XRD, H-2 chemisorption, and diffuse-reflectance infrared Fourier transform spectroscopy. The results indicated that Pd/CeO2-TiO2 has the highest activity among these catalysts, whether in the calcined state or in the reduced state. The activity of all of the catalysts can be improved significantly by the pre-reduction, and it seems that the reduction at low temperature (LTR. 150 degrees C) is more effective than that at high temperature (HTR, 500 degrees C), especially for Pd/CeO2 and Pd/TiO2. The catalysts with various supports and pretreatments are also different in the reaction mechanisms for CO oxidation at low temperature. Over Pd/TiO2, the reaction may proceed through a surface reaction between the weakly adsorbed CO and oxygen (Langmuir-Hinshelwood). For Ce-containing catalysts, however, an alteration of reaction mechanism with temperature and the involvement of the oxygen activation at different sites were observed, and the light-off profiles of the calcined Pd/CeO2 and Pd/CeOi-TiO2 show a distortion before CO conversion achieves 100%. At low temperature, CO oxidation proceeds mainly via the reaction between the adsorbed CO on Pd-0 sites and the lattice oxygen of surface CeO2 at the Pd-Ce interface, whereas at high temperature it proceeds via the reaction between the adsorbed CO and oxygen. The high activity of Pd/CeO2-TiO2 for the low-temperature CO oxidation was probably due to the enhancements of both CO activation, caused by the facilitated reduction of Pd2+ to Pd-0, and oxygen activation, through the improvement of the surface oxygen supply and the oxygen vacancies formation. The reduction pretreatment enhances metal-support interactions and oxygen vacancy formation and hence improves the activity of CO oxidation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the observation of resonant Raman scattering in low-temperature-grown AlGaAs/GaAs structure. Two kinds of excitation lights, 632.8 and 488 nm laser lines, were used to detect scattering signal from different regions based on different penetration depths. Under the outgoing resonant condition, up to fourth-order resonant Raman peaks were observed in the low-temperature-grown AlGaAs alloy, owing to a broad exciton luminescence in low-temperature-grown AlGaAs alloy induced by intrinsic defects and As cluster after post-annealing. These resonant peaks were assigned according to their fundamental modes. Among the resonant peaks, besides the overtones of the GaAs- or AlAs-like mode, there exist combination bands of these two kinds of modes. In addition, a weak scattering peak similar to the bulk GaAs longitudinal optical mode was observed in low-temperature Raman experiments. We consider the weak signal correlated with GaAs clusters appearing in AlGaAs alloys. The accumulation of GaAs in AlGaAs alloys was enhanced after annealing at high temperatures. A detailed study of the dependence of vibration modes on measuring temperature and post-annealing conditions is given also. In light of our experiments, it is suggested that a Raman scattering experiment is a sensitive microscopic probe of local disorder and, especially performed at low temperature, is a superior method in detecting and analyzing the weak interaction between phonons and electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature (similar to 500 degrees C) growth properties of Si1-xGex by disilane and solid-Ge molecular beam epitaxy have been studied with an emphasis on surface morphology and growth kinetics. It is found that low-temperature growth(<500 degrees C) is in layer-by-layer mode and atomically-smooth surfaces have been obtained in as-grown samples with large Ge composition (>0.5). Ge composition dependence on substrate temperature, Ge cell temperature and disilane flow rate have been investigated. It is found that in low-temperature growth (less than or equal to 500 degrees C) and under large disilane flux, Ge composition increases with the increase of Ge flux and further increase of Ge flux leads to the saturation of Ge composition. Similar compositional dependence has been found at different growth temperatures. The saturated composition increases with the decrease of substrate temperature. The results can be explained if H desorption is assumed to occur from both Si and Ge monohydrides without diffusional exchange and the presence of Ge enhances H desorption on a Si site. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

化石燃料的不可再生性决定了其不能长久为全球经济和科技的发展提供能源动力,从可持续发展和能源战略的角度考虑,能够替代石油及其衍生品的清洁替代燃料研究已经成为提高能源供应安全、改善环境污染问题、应对气候变化的重要措施,对替代燃料的研究和应用已经成为各方关注和开发的热点。 二甲醚(DME、CH3OCH3)是一种最简单的醚类,它不含C-C健,可以由天然气、煤、生物质燃料等大量制备,而且具有较高的辛烷值(55-60),较低的碳氢化合物、CO排放,没有PM排放,因而被认为是一种非常有发展前景的发动机替代燃料,已经受到了广泛的关注。但是,在发动机燃用DME的实验研究表明,在其排气中有非常规污染物甲醛(HCHO)、乙醛(CH3CHO),甲酸甲酯(HCOOCH3)等排放,这些有机污染物会对环境和人类健康产生严重的危害,在环保要求日益严格的趋势下,这就制约了二甲醚的规模化应用。因此,对二甲醚燃烧性能、氧化中间产物甲醛等的产生和排放机理、相关污染物抑制技术需要进行着重研究,这对二甲醚燃料规模化应用、相关二甲醚燃烧器设计、燃烧性能的优化以及污染物控制技术的研究等都有着重要的理论指导意义和参考价值。 为了充分理解二甲醚燃料的燃烧特性、非常规污染物甲醛的产生和消耗机理,本文以实验和二甲醚化学反应动力学机理为指导,对二甲醚预混燃烧的燃烧特性、相关污染物和甲醛产生和消耗的机理做了详细的研究;并针对二甲醚燃料的不同应用背景,对二甲醚燃料低温下的氧化和甲醛生成特性、DME与LPG掺混燃烧特性和甲醛生成消耗机理进行了深入的研究,具体工作有: 研究了二甲醚预混燃烧特性、火焰中甲醛等污染物的产生特性,建立了火焰中甲醛取样、测量的方法和实验平台。并对当量比和燃料流量对二甲醚预混燃烧的燃烧特性、甲醛生成特性影响进行了考察,实验结果表明二甲醚是一种优良的替代燃料,在二甲醚火焰中甲醛是其重要的中间产物,甲醛浓度分布与当量比和预混气流速密切相关。当量比一定时,随着预混气流速的增加,火焰中甲醛产生的范围变窄,且甲醛浓度峰值逐渐移向燃烧器出口,而甲醛产生的浓度峰值数值上相差不大,甲醛在形成峰值后被快速消耗,其浓度在0.1mm内下降到几乎为零;在二甲醚流量一定时,随着当量比的增加,火焰中产生了更多的甲醛,火焰中甲醛分布的范围也变宽,而且当量比越大,甲醛的消耗也变缓,在当量比为0.8时,甲醛浓度从峰值到被消耗距离变为2mm,远大于当量比0.6和0.7下0.1mm的消耗距离。 对二甲醚预混燃烧进行数值研究和化学动力反应机理分析后发现,在二甲醚燃烧中,二甲醚的氧化反应途径主要是通过脱氢生成CH3OCH2和在高温下的直接裂解反应而进行,其中脱氢反应是低温下二甲醚消耗的主要途径,而在高温反应阶段(T>1000K),DME的直接裂解和燃料的脱氢反应共同起主导作用;非常规污染物甲醛通过DME脱氢产物CH3OCH2的裂解和外部氧化而生成,在高温时通过DME直接裂解后被氧化产生;甲醛的消耗反应则是通过与H、O、OH和CH3基的氧化反应而完成,其中与O、OH基的反应在燃烧中起主要作用。因此二甲醚燃烧中甲醛的抑制关键在燃烧中甲醛的消耗阶段,采取有效的技术措施,如优化燃烧器结构提高二甲醚燃烧室内的温度、在燃烧区保证充足的氧气供应等措施,加快甲醛的消耗速度以促进其被完全氧化,可以实现二甲醚燃烧中甲醛的零排放。 针对柴油发动机燃用DME燃料时,燃料在燃烧室停留时间过短,造成部分未燃二甲醚随尾气排放,对DME在低温下(<800K)的氧化特性和甲醛生成特性进行了实验研究。结果表明,二甲醚在200℃左右就开始发生氧化反应,在200~400℃温度范围内被氧化而生成大量中间产物甲醛,且在此温度范围内甲醛不易被氧化分解,而发动机尾气温度(一般在200~600℃之间)处于甲醛最易生成的范围,因此未燃二甲醚在尾气中发生低温氧化反应生成的甲醛,是发动机燃用DME而排放高浓度甲醛的重要来源。研究结论为柴油发动机燃用DME抑制非常规污染物甲醛的排放提供了新的参考。 DME作为替代燃料,部分替代及与其他石化系燃料掺混燃烧是目前的重要应用方向,对DME与LPG掺混燃烧特性和甲醛生成特性进行了实验研究,结果表明,在DME与LPG掺混燃烧中,固定当量比和燃料质量流量的条件下,两种燃料存在一个最佳掺混比,在此掺混比例下,混合燃料着火提前,燃料燃烧性能最佳;DME与LPG混合燃料中,二甲醚是燃烧中甲醛产生的主要来源,控制DME的完全氧化和燃烧是抑制DME与LPG掺混燃烧排放甲醛的主要途径,这为更好地应用DME与LPG混合燃料提供了参考。 能否清洁高效燃烧是决定替代燃料DME应用规模和途径中的关键任务,本文对DME燃烧特性、非常规污染物甲醛的生成排放特性、低温下DME的氧化特性、DME与LPG掺混燃烧特性的研究,从不用的应用方向和领域对DME清洁高效燃烧进行了探讨和研究,研究成果可以为清洁高效利用二甲醚、抑制甲醛排放,以及开发相关燃烧技术、燃烧器提供实验依据和理论指导。本文在DME燃烧特性和非常规污染物甲醛的产生与排放方面取得了具有创新性的研究结果。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The partial oxidation of methane with molecular oxygen was performed on Fe-Mo/SiO2 catalysts. Iron was loaded on the Mo/SiO2 catalyst by chemical vapor deposition of Fe-3(CO)(12). The catalyst showed good low-temperature activities at 723-823 K. Formaldehyde was a major condensable liquid product on the prepared catalyst. There were synergistic effects between iron and molybdenum in Fe-Mo/SiO2 catalysts for the production of formaldehyde from the methane partial oxidation. The activation energy of Mo/SiO2 decreased with the addition of iron and approached that of the Fe/SiO2. The concentration of isolated molybdenum species (the peak at 1148 K in TPR experiments) decreased as the ion concentration increased and had a linear relationship with the selectivity of methane to formaldehyde. The role of Fe and Mo in the Fe-Mo/SiO2 catalyst was proposed: Fe is the center for the C-H activation to generate reaction intermediates, and Mo is the one for the transformation of intermediates into formaldehyde. Those phenomena were predominant below 775 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An apparatus of low-temperature controlling for fatigue experiments and its crack measuring system were developed and used for offshore structural steel A131 under conditions of both low temperature and random sea ice. The experimental procedures and data processing were described, and a universal random data processing software for FCP under spectrum loading was written. Many specific features of random ice-induced FCP which differed with constant amplitude FCP behaviours were proposed and temperature effect on ice-induced FCP was pointed out with an easily neglected aspect in designing for platforms in sea ice emphasized. In the end, differences of FCP behaviours between sea ice and ocean wave were presented.