78 resultados para optical loss
Resumo:
A V-shaped solar cell module consists of two tilted mono-crystalline cells [J. Li, China Patent No. 200410007708.6 (March, 2004)]. The angle included between the two tilted cells is 90 degrees. The two cells were fabricated by using polished silicon wafers. The scheme of both-side polished wafers has been proposed to reduce optical loss. Compared to solar cells in a planar way, the V-shaped structure enhances external quantum efficiency and leads to an increase of 15% in generation photocurrent density. The following three kinds of trapped photons are suggested to contribute to the increase: (1) infrared photons converted from visible photons due to a transformation mechanism, (2) photons reflected from top contact metal, and (3) a residual reflection which can not be eliminated by an antireflection coating.
Resumo:
Optical waveguide propagation loss measurement method based on optical multiple reflections detection is presented in this paper. By using a precision reflectometer, uncertain influence on waveguide propagation loss measurement caused by fiber-waveguide coupling can be eliminated effectively and the waveguide net propagation loss can be measured accurately. To demonstrate this, the propagation loss of a Silicon-on-Insulator (SOI) rib waveguide fabricated by RIE is measured with the obtained value being 4.3 dB/cm. This method provides a non-destructive means for evaluating waveguide propagation loss. (c) 2005 Elsevier B.V. All rights reserved.
Theoretical Design of Low-loss Single-Polarization Single-Mode Microstructured Polymer optical Fiber
Resumo:
A reliable validation based on the optical flow visualization for numerical simulations of complex flowfields is addressed in this paper. Several test cases, including two-dimensional, axisymmetric and three-dimensional flowfields, were presented to demonstrate the effectiveness of the validation and gain credibility of numerical solutions of complex flowfields. In the validation, images of these flowfields were constructed from numerical results based on the principle of the optical flow visualization, and compared directly with experimental interferograms. Because both experimental and numerical results are of identical physical representation, the agreement between them can be evaluated effectively by examining flow structures as well as checking discrepancies in density. The study shows that the reliable validation can be achieved by using the direct comparison between numerical and experiment results without any loss of accuracy in either of them.
Resumo:
An erratum is presented to correct the propagation loss of the freestanding optical fibers fabricated in glass chip. (c) 2006 Optical Society of America.
Resumo:
A 2-D SW-banyan network is introduced by properly folding the 1-D SW-banyan network, and its corresponding optical setup is proposed by means of polarizing beamsplitters and 2-D phase spatial light modulators. Then, based on the characteristics and the proposed optical setup, the control for the routing path between any source-destination pair is given, and the method to determine whether a given permutation is permissible or not is discussed. Because the proposed optical setup consists of only optical polarization elements, it is compact in structure, its corresponding energy loss and crosstalk are low, and its corresponding available number of channels is high. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on the optical characteristics of PLZT electro-optic ceramic, two kinds of electro-optic deflectors, triangular electrode structure and optical phased array technology, are studied in detail by using transverse electro-optic effect. Theoretically, the electro-optic deflection characteristics and mechanisms of the deflectors are analyzed. Experimentally, the optical characteristics of ceramic wafer, such as the phase modulation, the hysteresis and the electro-induced loss characteristics, are measured firstly, and then the beam deflection experiments are designed to verify the theoretical results. Moreover, the effect of temperature on the performance of triangular electrode deflector is investigated. The characteristics of both deflectors are also compared and illuminated. (c) 2007 Optical Society of America.
Resumo:
In this paper, a refractive index pro. le design enabling us to obtain a. at modal field around the fibre centre is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) optical fibres is presented. A comparison is made between the properties of a three-layer LFM structure and a standard step-index pro. le with the same core size. The obtained results indicate that the effective area of the LFM fibre is about twice as large as that of the standard step-index fibre, but the LFM fibre has less effective ability to filter out the higher order modes than the standard step-index fibre with the same bending radius.
Resumo:
Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of an apodizer with two parallel taper refractive surfaces is theoretically investigated for high-density optical storage. The apodizer may modulate an incident Gaussian beam into an annular beam. Simulation shows that with the increasing inner radius of the modulated beam, the focal spot shrinks obviously. The depolarization effect gets strong simultaneously, which induces the circular symmetry loss of the focal spot. In this process, pattern density of the orthogonal and longitudinal diffractive fields increases remarkably.
Resumo:
A novel metallized azo dye has been synthesized. The absorption spectra of the thin film and thermal characteristic are measured. Static optical recording properties with and without the Bi mask layer super-resolution near-field structure (Super-RENS) of the metal-azo dye are investigated. The results show that the metal-azo dye film has a broad absorbance band in the region of 450-650 nm and the maximum absorbance wavelength is located at 603 nm. It is also found that the new metallized azo dye occupies excellent thermal stability, initiatory decomposition temperature is at 270 degrees C and the mass loss is about 48% in a narrow temperature region (15 degrees C). The complex refractive index N (N = n + ik) is measured. High refractive index (n = 2.45) and low extinction coefficient (k = 0.2) at the recording wavelength 650nm are attained. Static optical recording tests with and without Super-RENS are carried out using a 650nm semiconductor diode laser with recording power of 7mW and laser pulse duration of 200ns. The AFM images show that the diameter of recording mark on the dye film with the Bi mask layer is reduced about 42%, compared to that of recorded mark on the dye film without Super-RENS. It is indicated that Bi can well performed as a mask layer of the dye recording layer and the metallized azo dye can be a promising candidate for recording media with the super-resolution near-field structure.
Resumo:
We report on the fabrication and characterization of low-loss planar and stripe waveguides in a Nd3+-doped glass by 6 MeV oxygen-ion implantation at a dose of 1x10(15) ions/cm(2). The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. The refractive index profile of the planar waveguide was reconstructed from a code based on the reflectivity calculation method. The results indicate that a refractive index enhanced region as well as an optical barrier have been created after the ion beam processing. The near-field mode profiles of the stripe waveguide were obtained by an end-fire coupling arrangement, by which three quasitransverse electric modes were observed. After annealing, the propagation losses of the planar and stripe waveguides were reduced to be similar to 0.5 and similar to 1.8 dB/cm, respectively. (c) 2007 American Institute of Physics.
Resumo:
Two kinds of silanes, 3-glycidoxypropyltrimethoxysilane (GLYMO) and 3-trimethoxysililpropylmethacrylate (TMSPM), were used to prepare ormosil waveguide films by the sol-gel method. Thirty percent Ti(OBu)(4) and 70% silane were contained in the precursor sets. The properties of films were measured by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), m-line and scattering-detection method. The films from GLYMO and TMSPM precursors exhibit similar thickness (2.58 mu m for GLYMO, 2.51 mu m for TMSPM) and refractive index (1.5438 for GLYMO, 1.5392 for TMSPM, lambda=632.8 nm), but the film from TMSPM precursor has higher propagation loss (1.024 dB/cm, lambda=632.8 nm) than the film prepared from GLYMO (0.569 dB/cm, lambda=632.8 nm). Furthermore, the film prepared from TMSPM is easy to be opaque and cracks during coating whereas the same phenomenon was not found for the film prepared with GLYMO. It is confirmed that GLYMO is a better precursor than TMSPM for waveguide film preparation. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Low loss index enhanced planar waveguides in Nd3+-doped silicate glass were fabricated by 3.0 MeV C+ ion implantation. The enhancement of the refractive index confined the light propagating in the waveguide. The prism-coupling method was used to measure dark modes in the waveguide. The effective refractive indices of the waveguide were obtained based on the dark modes. The moving fiber method was applied to measure the waveguide propagation loss. Loss measured in non-annealed samples is about 0.6 dB/cm. And the waveguide mode optical near-field output at 633 nm was presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nd:silicate glass was implanted at room temperature by 6.0 MeV C3+ ions with a dose of 2.0 x 10(15) ions cm(-2). A waveguide with thickness of about 6.3 mu m was formed. The prism-coupling method was used to observe the dark modes of the waveguide at 633 nm and 1539 nm, respectively. There are three dark modes at 633 nm, of which one is the enhanced-index mode. The propagation loss of the enhanced-index mode in the waveguide measured at 633 nm is 0.42 dB cm(-1) after annealing at 217 degrees C for 35 min. The reflectivity calculation method was applied to simulate the refractive index profiles in the waveguide. The mode optical near-field output at 633 nm was presented.