330 resultados para neutron emission width


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-wavelength high indium content InxGa1-xAs/GaAs single/multi quantum wells (QWs) structures have been successfully grown by molecular beam epitaxy. It is evidenced by X-ray measurements that the critical thickness of the well width of InxGa1-xAs/GaAs QWs with an indium content x of 47.5% can be raised up to 7nm without strain relation. 1.25μ m photoluminescence (PL) emission is obtained from the QWs with narrower full-width at half maximum (FWHM) less than 30meV. Our results are important basements which are useful for further fabricating GaAs-based long-wavelength devices. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembled growth of vertically well-aligned ZnO nanorod arrays with uniform length and diameter on Si substrate has been demonstrated via thermal evaporation and vapor-phase transport. The structural, photoluminescence (PL), and field emission properties of the as-prepared nanorod arrays were investigated. The PL spectrum at 10 K shows a strong and sharp near-band gap emission (NBE) peak ( full width at half-maximum (FWHM) = 4.7 meV) and a weak neglectable deep-level emission (DL) peak (I-NBE/I-DL= 220), which implies its good crystallinity and high optical quality. The room-temperature NBE peak was deduced to the composition of free exciton and its first-order replicas emissions by temperature-dependent PL spectra. The field emission measurements indicate that, with a vacuum gap of 400 Am, the turn-on field and threshold field is as low as 2.3 and 4.2 V/mu m. The field enhancement factor beta and vacuum gap d follows a universal equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, InAs quantum dots (QDs) grown on a linear graded InGaAs metamorphic buffer layer by molecular beam epitaxy have been investigated. The growth of the metamorphic buffer layers was carefully optimized, yielding a smooth surface with a minimum root mean square of roughness of less than 0.98 nm as measured by atomic force microscopy (AFM). InAs QDs were then grown on the buffer layers, and their emission wavelength at room-temperature is 1.49 mu m as measured by photoluminescence (PL). The effects of post-growth rapid thermal annealing (RTA) on the optical properties of the InAs QDs were investigated. After the RTA, the PL peak of the QDs was blue-shifted and the full width at half maximum decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Square microcavity laser with an output waveguide is proposed and analyzed by the finite-difference time-domain (FDTD) technique. For a square resonator with refractive index of 3.2, side length of 4 microns, and output waveguide of 0.4-micron width, we have got the quality factors (Q factors) of 6.7×10~2 and 7.3×10~3 for the fundamental and first-order transverse magnetic (TM) mode near the wavelength of 1.5 microns, respectively. The simulated intensity distribution for the first-order TM mode shows that the coupling efficiency in the waveguide reaches 53%. The numerical simulation shows that the first-order transverse modes have fairly high Q factor and high coupling efficiency to the output waveguide. Therefore the square resonator with an output waveguide is a promising candidate to realize single-mode directional emission microcavity lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kind of novel broad-band superluminescent diodes (SLDs) using graded tensile-strained bulk InGaAs is developed. The graded tensile-strained bulk InGaAs is obtained by changing only group-III trimethyl-gallium source flow during low-pressure metal organic vapor-phase epitaxy. At the injection current of 200 mA, the fabricated SLDs with such structure demonstrate full-width at half-maximum spectral width of 106 nm and the output light power of 13.6 mW, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The InAs quantum dots (QDs) on an AlAs layer are grown on GaAs substrates by molecular beam epitaxy technique. The properties of materials and optics of such QD structures have been investigated by cross sectional transmission electron microscopy and photoluminescence (PL) techniques. It is discovered that the inhomogeneous strain filed mainly exists below InAs QDs layers in the case of no wetting layer. The full width at half maximums (FWHMs) and intensities of PL emission peaks of InAs QDs are found to be closely related to the thickness of the thin AlAs layers. The InAs QDs on an eight monolayer AlAs layer, with wide FWHMs and large integral intensity of PL emission peaks, are favorable for producing broadband QD superluminescent diodes, external-cavity QD laser with large tuning range.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the isospin- and momentum-dependent hadronic transport model 1BUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction Systems Sn-132+Sn-124, Sn-124+Sn-112 and Sn-112+(112)Su which are of the same total proton number but, different isospin asymmetry. We find that, the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.