145 resultados para electroabsorption modulator (EAM)
Resumo:
An electroabsorption modulator with large optical cavity was designed and fabricated successfully. Both the simulated and experimental results show that, the larger optical cavity structure introduced could obviously improve the optical profile of EA modulator, the traditional elliptical near-field spot becomes more rounded, so it will match better with the optical fiber and is beneficial for raising the coupling efficiency.
Resumo:
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A 100-μm-long electroabsorption modulator monolithically integrated with passive waveguides at the input and output ports is fabricated through ion implantation induced quantum well intermixing, using only a two-step low-pressure metal-organic vapor phase epitaxial process. An InGaAsP/InGaAsP intra-step quantum well is introduced to the active region to improve the modulation properties. In the experiment high modulation speed and high extinction ratio are obtained simultaneously, the electrical-to-optical frequency response (E/O response) without any load termination reaches to 22 GHz, and extinction ration is as high as 16 dB.
Resumo:
A compact and stable three-port optical gate has been successfully fabricated by monolithically integrating asimple photodiode and an electroabsorption modulator. The gate shows an excellent DC logic "and" function with differ-ent load resistors. Its dynamical characteristics without packaging have also been measured. We observed a dynamic extinc-tion ratio of over 7dB with a 950Ω load resistor and a 7mW control light power at 622Mbit/s.
Resumo:
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel 1.55-μm spot-size converter integrated electroabsorption modulator was designed with conventional photolithography and chemical wet etching process. A ridge double-core structure was employed for the modulator, and a buried ridge double-core structure was incorporated for the spot-size converter. The passive waveguide was optically combined with a laterally tapered active waveguide to control the mode size. The figure of merit is 4.1667 dB/V(/100 μm) and the beam divergence angles in the horizontal and vertical directions were as small as 11.2 deg. and 13.0 deg., respectively.
Resumo:
An improved butt coupling method is used to fabricate an electroabsorption modulator (EAM) monolithically integrated with a distributed feedback (DFB) laser. The obtained electroabsorption-modulated laser (EML) chip with the traditional shallow ridge exhibits very low threshold current of 12 mA, output power of more than 8 mW, and static extinction ratio of -7 dB at the applied bias voltage from 0.5 to -2.0 V.
Resumo:
国家863计划
Resumo:
提出一种新颖的方法用于测量电吸收调制器(electroabsorption modulator,EAM)各种因素造成的插入损耗.此方法仅需要测量波长相关的光电流(Iph-λ)和光透过功率(P-λ)的数据,通过最小二乘法拟合出结果.理论分析表明此方法较精确,实验表明测试结果与理论拟合结果自洽得很好.
Resumo:
采用超低压(22×10^2Pa)选择区域生长(selective area growth,SAG)金属有机化学气相沉积(metal-organic chemical vapor deposition。MOCVD)技术成功制备了应变型InGaAsP/InGaAsP电吸收调制器(electroabsorption modulator,EAM)与分布反馈激光器(distribute feedback laser,DFB)单片集成光源的新型光电器件.实验结果表明。采用该技术制备的集成器件表现出了良好的性能
Resumo:
采用超低压(22×10^2Pa)选择区域生长(selective area growth,SAG)金属有机化学气相沉积(metal—organic chemical vapor deposition,MOCVD)技术成功制备了InGaAsP/InGaAsP级联电吸收调制器(electroabsorption modulator,EAM)与分布反馈激光器(distributed feedback laser,DFB)单片集成光源的新型光电器件.实验结果表明,采用该技术制备的器件具有良好的性能
Resumo:
High speed reliable 1.55 mum AlGaInAs multi-quantum well ridge waveguide (RW) DFB laser is developed with a 9GHz -3dB bandwidth. A high speed self aligned constricted mesa 1.55 mum DFB laser is achieved with a 9.1GHz -3dB bandwidth and a more than 20mW output power. A cost effective single RW electroabsorption modulated DFB laser (EMLs) is proposed and successfully fabricated by adopting selective area growth techniques:. a penalty free transmission at 2.5Gbps over 280Km normal G.652 single mode fiber is realized by using this EML as light source. For achieving a better performance EMLs. a gain-coupled DFB laser with etched quantum wells is successfully integrated with a electroabsorption modulator (EAM) for a high single mode yield. the wavelength of a EML is tuned in a 3.2nm range by a integrated thin-film heater for the wavelength routing. a buried heterostructure DFB laser is also successfully integrated with a RW EAM for a lower threshold current. lower EAM parasitic capacitance and higher output power.