262 resultados para buffer layer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the growth of GaN on Si(111) substrates with AlxGa1-xN/AlN buffer layer by ammonia gas source molecular beam epitaxy (NH3-GSMBE). The influence of the AlN and AlxGa1-xN buffer layer thickness and the Al composition on the crack density of GaN has been investigated. It is found that the optimum thickness is 120 and 250 nm for AlN and AlxGa1-xN layers, respectively. The optimum Al composition is between 0.3 < x < 0.6. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The character of InAs quantum dots (QD) directly deposited on a combined InAlAs-GaAs (XML) strained buffer layer (SBL) has been investigated. This growth technique realizes high-density QD (5.88 x 10(10) cm(-2)) by changing the thickness of GaAs in InAlAs-GaAs SBL. The dependence of the density and the aspect ratio of QD on the GaAs thickness has been discussed in detail. The photoluminescence (PL) measurements demonstrate an obvious redshift with the increase of GaAs thickness. In addition, the deposition of InAs QDs grown on the combined InAlAs-GaAs SBL has an important effect of the QD properties. The ordered QD array can be observed from the sample deposited by atomic layer epitaxy, of which the PL peak shows an obvious redshift in comparison to the molecular beam epitaxy (MBE) QDs when the GaAs thicknesses are equal. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al0.58Ga0.42N epilayers are grown by ammonia gas source molecular beam epitaxy (NH3-MBE) on (0001) sapphire substrate using AlGaN buffer layer. The effects of the buffer layer growth temperature on the properties of Al0.58Ga0.42N epilayer are especially investigated. In-situ high-energy electron diffraction (RHEED), double-crystal X-ray diffraction (DCXRD), atomic force microscopy (AFM), photoconductivity measurement and cathodoluminescence (CL) are used to characterize the samples. It is found that high growth temperature of AlGaN buffer layer would improve the crystalline quality, surface smoothness, optical quality and uniformity of the Al0.58Ga0.42N epilayer. The likely reason for such improvements is also suggested. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of InAsxSb1-x films on (100) GaSb substrates by liquid-phase epitaxy (LPE) has been investigated and epitaxial InAs0.3Sb0.7 films with InAs0.9Sb0.09 buffer layers have been successfully obtained. The low X-ray rocking curve FHWM values of InAs0.3Sb0.7 layer shows the high quality of crystal-orientation structure. Hall measurements show that the highest electron mobility in the samples obtained is 2.9 x 10(4) cm(2) V-1 s(-1) and the carrier density is 2.78 x 10(16)cm(-3) at room temperature (RT). The In As0.3Sb0.7 films grown on (10 0) GaSb substrates exhibit excellent optical performance with a cut-off wavelength of 12 mu m. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The V/III ratio in the initial growth stage of metalorganic chemical vapor deposition has an important influence on the quality of a GaN epilayer grown on a low-temperature AIN buffer layer and c-plane sapphire substrate. A weaker yellow luminescence, a narrower half-width of the X-ray diffraction peak, and a higher electron mobility result when a lower V/III ratio is taken. The intensity of in situ optical reflectivity measurements indicates that the film surface is rougher at the beginning of GaN growth, and a longer time is needed for the islands to coalesce and for a quasi-two dimensional mode growth to start. A comparison of front- and back-illuminated photoluminescence spectra confirms that many threading dislocations are bent during the initial stage, leading to a better structural quality of the GaN layer. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality ZnO films have been successfully grown on a Si (100) substrate by metal organic chemical vapour deposition with a gamma-Al2O3 buffer. The crystal structure, surface morphology and optical properties of the ZnO films were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy and photoluminescence (PL) spectroscopy. The propel-ties of the films with the Al2O3 buffer were improved in comparison with those of as-grown ZnO films. It is shown that the ZnO films with the gamma-Al2O3 buffer grown on Si (100) substrates have a highly-preferential c-axis (0002) orientation, a narrow (0002) peak, smooth surface morphology and better PL spectral properties. This demonstrates that the use of gamma-Al2O3/Si as a ZnO substrate is beneficial for reducing the residual stress for further growth of ZnO films, compared with the growth on bulk Si substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various low-temperature (LT) ultra-thin buffer layers have been fabricated on the GaAs (001) substrate. The buffer layer is decoupled from the host substrate by introducing low-temperature defects. The 400 nm In0.25Ga0.75As films were grown on these substrates to test the 'compliant' effects of the buffer layers. Atomic force microscopy, photoluminescence, double crystal x-ray diffraction and transmission electron microscopy were used to estimate the quality of the ln(0.25)Ga(0.75)As layer. The measurements indicated that the misfit strains in the epilayer can be accommodated by the LT ultra-thin buffer layer. The strain accommodation effects of the LT defects have been discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on alpha-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin GaAs/AlAs and GaAs/GaAs buffer layer structure have been fabricated on the GaAs(001) substrate. The top GaAs buffer layer is decoupled from the host substrate by introduction of a low temperature thin interlayer (AlAs or GaAs), which was mechanically behaved like the compliant substrate. Four hundred nanometer In0.25Ga0.75As films were grown on these substrates and the traditional substrate directly. Photoluminescence (PL), double-crystal X-ray diffraction (DCXRD) and atomic force microscopy (AFM) measurements were used to estimate the quality of the In0.25Ga0.75As layer and the compliant effects of the low temperature buffer layer. All the measurements shown that the qualities of epilayer have been improved and the substrate have been deteriorated severely. The growth technique of the thin GaAs/AlAs structure was found to be simple but very powerful for heteroepitaxy. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quaternary InAlGaN film has been grown directly on top of low-temperature-deposited GaN buffer layer by low-pressure metalorganic vapor phase epitaxy. High-resolution X-ray diffraction and photoluminescence (PL) results show that the film has good crystal quality and optical property. Temperature-dependent PL and time-resolved PL (TRPL) have been employed to study the carriers recombination dynamics in the film. The TRPL signals can be well fitted as a stretched exponential function exp[-(t/tau)(beta)] from 14 to 250 K, indicating that the emission is attributed to the radiative recombination of excitons localized in disorder quantum nanostructures such as quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-sectional high-resolution electron microscopy measurement further proves that there exist the disorder quantum nanostructures in the quaternary. By investigating the dependence of the exponential parameter beta on the temperature, it is shown that the multiple trapping-detrapping mechanism dominates the diffusion among the localized states. The localized states are considered to have two-dimensional density of states (DOS) at 250 K, since radiative recombination lifetime tau(r) increases linearly with increasing temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A step-graded InAlAs buffer layer and an In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor (MM-HEMT) structures were grown by molecular beam epitaxy on GaAs (001) substrates, and rapid thermal annealing was performed on them in the temperature range 500-800 degreesC for 30 s. The as-grown and annealed samples were investigated with Hall measurements, and 77 K photoluminescence. After rapid thermal annealing, the resistivities of step-graded InAlAs buffer layer structures became high. This can avoid leaky characteristics and parasitic capacitance for MM-HEMT devices. The highest sheet carrier density n(s) and mobility mu for MM-HEMT structures were achieved by annealing at 600 and 650degreesC, respectively. The relative intensities of the transitions between the second electron subband to the first heavy-hole subband and the first electron subband to the first heavy-hole subband in the MM-HEMT InGaAs well layer were compared under different annealing temperatures. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si(100) and Si(lll) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1 degrees, while the minimum is 0.353 degrees. This result is better than the minimum FWHM (about 2 degrees) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(lll).