30 resultados para Yun, Zhu, 1761-1833.
Resumo:
A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
An electroabsorption modulator with large optical cavity was designed and fabricated successfully. Both the simulated and experimental results show that, the larger optical cavity structure introduced could obviously improve the optical profile of EA modulator, the traditional elliptical near-field spot becomes more rounded, so it will match better with the optical fiber and is beneficial for raising the coupling efficiency.
Resumo:
A new evanescently coupled uni-traveling carrier photodiode (EC-UTC-PD) is designed, fabricated and characterized, which incorporates a multimode diluted waveguide structure and UTC active waveguide structure together. A high responsivity of 0.68A/W at 1.55-mu m without an anti-reflection coating, a linear photocurrent responsivity of more than 21 mA, and a large-1 dB vertical alignment tolerance of 2.5 mu m are achieved.
Resumo:
We report on chip-scale optical gates based on the integration of evanescent waveguide unitraveling-carrier photodiodes (EC-UTC-PDs) and intra-step quantum well electroabsorption modulators (IQW-EAMs) on n-InP substrates. These devices exhibit simultaneously 2.1 GHz and -16.2 dB RF-gain at 21 GHz with a 450 Omega thin-film resistor and a bypass capacitor integrated on a chip.
Resumo:
Micro Fabry-Perot (F-P) interferometers (MFPIs) are machined in a single-mode fiber (SMF) and a photonic crystal fiber (PCF) by using a near-infrared femtosecond laser, respectively. The strain and temperature characteristics of the two MFPIs with an identical cavity length are investigated and the experimental results show that the strain sensitivity of the PCF-based MFPI is smaller than that of the SMF-based MFPI due to their different waveguide structures, while the two MFPIs have close temperature sensitivities which are much smaller than that of an in-line SMF etalon sensor reported previously. These MFPIs in silica fibers are compact, stable, inexpensive, capable for mass-production and easy fabrication, offering great potentials for wide sensing applications. (c) 2007 Optical Society of America.
Resumo:
The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20-μm-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5-μm-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.
Resumo:
The Latest developed LECR2M (Lanzhou ECR No. 2 Modified) source is the updated one of LECR2 (Lanzhou ECR No. 2) source at IMP. It has been assembled on the low energy ion beam experimental platform to produce MCI beams for atomic physics and material physics experimental research. In our updating program, the structure of injection and extraction components has been modified to make the source structure more simple and effective. The hexapole magnet has also been replaced by a new hexapole magnet with higher radial field and larger inner diameter. With this updating, stronger magnetic field confinement of the ECR plasma is possible and better base vacuum condition is also achieved. LECR2M was designed to be operated at 14.5GHz. During the preliminary test, 1.3emA O6+ beam was extracted with the injected rf power of 1.1kW. The source has been used to deliver intense MCI beams for different experiments. After some discussion of the main features of this newly updated source, some of the typical commissioning test results of LECR2M will be presented.
Resumo:
The axial emitted bremsstrahlung spectra were measured on SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) using an HPGe detector. The spectral temperature T-spe was obtained from the linear fit of the spectra in the semi-log present. The evolution of T-spe with microwave power and magnetic field configuration is investigated in this paper.
Resumo:
A compact proton beam source for space simulation has been developed. A compact structure was designed in order to meet the special requirements of miniaturization. Some particular means have been adopted for improving the proton portion and beam transmission at a long distance. The experimental results showed that 8mA/80keV proton beam can be successfully obtained from this source at about 700W input microwave power.
Resumo:
A new genus and new species of xanthid crab, Ovatis simplex, is described from the South China Sea. The genus is closest to Liagore but can be distinguished by a suite of carapace and male gonopod characters. The systematic position of Liagore is also considered, and both genera, Liagore and Ovatis, are here referred to the subfamily Xanthinae. Comparisons with the allied genera, Paratergatis and Pulcratis, are also provided.