329 resultados para Yellow latosol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A close relationship is found between the blue and yellow luminescence bands in n-type GaN films, which are grown without intentional acceptor doping. The intensity ratio of blue luminescence to yellow luminescence (I-BL/I-YL) decreases with the increase in edge dislocation densities as demonstrated by the (102) full width at half maximum of x-ray diffraction. In addition, the I-BL/I-YL ratio decreases with the increase in Si doping. It is suggested that the edge dislocation and Si impurity play important roles in linking the blue and yellow luminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the origin of yellow luminescence in n-type GaN. It is found that the relative intensity of yellow luminescence increases as the full width at half maximum of the x-ray diffraction rocking curve at the (102) plane increases. This indicates that the yellow luminescence is related to the edge dislocation density. In addition, the relative intensity of yellow luminescence is confirmed to increase with increasing Si doping for the high quality GaN we have obtained. We propose that the yellow luminescence is effectively enhanced by the transition from donor impurities such as Si to acceptors around the edge dislocations in n-type GaN. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped GaN epilayer on c-face (0 0 0 1) sapphire substrate has been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor. Photoluminescence (PL) as a function of temperature and excitation intensity have been systematically studied, and the competition between near band gap ultraviolet (UV) and defect-related yellow luminescence (YL) has been extensively investigated, It is revealed that the ratio of the UV-to-YL peak intensities depends strongly on the excitation intensity and the measurement temperature. The obtained results have been analyzed in comparison with the theoretical predications based on a bimolecular model. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unintentionally doped and Si-doped single crystal n-GaN films have been grown on alpha-Al2O3 (0001) substrates by LP-MOCVD. Room temperature photoluminescence measurement showed that besides the bandedges, the spectrum of an undoped sample was a broad deep-level emission band peaking from 2.19 to 2.30eV, whereas the spectrum for a Si-doped sample was composed of a dominant peak of 2.19eV and a shoulder of 2.32eV. At different temperatures, photoconductance buildup and its decay were also observed for both samples.. The likely origins of persistent photoconductivity and yellow luminescence, which might be associated with deep defects inclusive of either Ga vacancy(V-Ga)/Ga vacancy complex induced by impurities or N antisite (N-Ga), will be proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.