193 resultados para W(110), two-dimensional binary alloys, local density of states, atomic stacking sequence, anisotropy, domain wall energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al0.3Ga0.7N/AlN/GaN HEMT structures with significantly high mobility have been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. At room temperature (RT) a Hall mobility of 2104 cm(2)/Vs and a two-dimensional electron gas (2DEG) density of 1.1x10(13) cm(-2) are achieved, corresponding to a sheet resistance of 277.8 Omega/sq. The elimination of V-shaped defects were observed on Al0.3Ga0.7N/AlN/GaN HEMT structures and correlated with the increase of 2DEG mobility. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of a bounded intrinsic stacking fault in silicon is calculated. The method used is an LCAO-scheme (Linear Combinations of Atomic Orbitals) taking ten atomic orbitals of s-, p-, and d-type into account. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. We find occupied states located up to 0.3 eV above the valence band maximum (E(v)). This significantly differs from the result obtained for the ideal infinite fault for which the interface state is located at E(v)+ 0.1 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of a microporous titanosilicate framework, ETS-10 is calculated by means of a first-principles self-consistent method. It is shown that without the inclusion of the alkali atoms whose positions in the framework are unknown, ETS-10 is an electron deficient system with 32 electrons per unit cell missing at the top of an otherwise semiconductor-like band structure. The calculated density of slates are resolved into partial components. It is shown that the states of the missing electrons primarily originate from the Ti-O bond. The local density of states of the Ti-3d orbitals in the ETS-10 framework is quite different from the perovskite BaTiO3. The possibilities of ETS-10 crystal being ferroelectric or having other interesting properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An LCAO scheme (linear combination of atomic orbitals) taking into account ten atomic orbitals (s-, p-, and d-type) is used to calculate the electronic structure of a vacancy present in the core of the reconstructed 90 degrees partial dislocation in silicon. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. The three-fold degenerate stale of the ideal vacancy is split into three levels with energies 0.26, 1.1, and 1.9 eV measured from the valence band edge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of electron states in the presence of microwave irradiation play a key role in understanding the oscillations of longitudinal resistance and the zero-resistance states in a high-mobility two-dimensional electron gas(2DEG) in low magnetic field. The properties of electron states in a high-mobility and low-density GaAs/Al0.35Ga0.65As 2DEG in the presence of Ka-band microwave irradiation were studied by reflectance-based optically detected cyclotron resonance(RODCR). The influences of the direction of microwave alternating electronic field, wavelength of the laser, and temperature on RODCR results were discussed. The results show that RODCR measurements provide a convenient and powerful method for studying electron states in 2DEG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on time-resolved Kerr rotation measurements of spin coherence of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While the transverse spin lifetime (T-2(*)) of electrons decreases monotonically with increasing magnetic field, it has a nonmonotonic dependence on the temperature and reaches a peak value of 596 ps at 36 K, indicating the effect of intersubband electron-electron scattering on the electron-spin relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional transmission electron microscopy and energy-filtering were used to study the dislocations and nanocavities in proton-implanted [001] silicon. A two-dimensional network of dislocations and nanocavities was found after a two-step annealing, while only isolated cavities were present in single-step annealed Si. In addition, two-step annealing increased materially the size and density of the nanocavities. The Burgers vector of the dislocations was mainly the 1/2[110] type. The gettering of oxygen at the nanocavities was demonstrated. (C) 1998 American Institute of Physics. [S0003-6951(98)00620-2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on high magnetic fields (up to 40 T) cyclotron resonance, quantum Hall effect and Shubnikov-de-Hass measurements in high frequency transistors based on Si-doped GaN-AlGaN heterojunctions. A simple way of precise modelling of the cyclotron absorption in these heterojunctions is presented, We clearly establish two-dimensional electrons to be the dominant conducting carriers and determine precisely their in-plane effective mass to be 0.230 +/- 0.005 of the free electron effective mass. The increase of the effective mass with an increase of two-dimensional carrier density is observed and explained by the nonparabolicity effect. (C) 1997 American Institute of Physics.