54 resultados para Transistor circuits.
Resumo:
This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.
Resumo:
An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benelits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(lambda/eta(slab))(3) for oscillation -mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.
Resumo:
This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy ( MBE) in turn on a GaAs substrate. An Al0.24Ga0.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-mu m gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.
Resumo:
4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.
Resumo:
Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.
Resumo:
A step-graded InAlAs buffer layer and an In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor (MM-HEMT) structures were grown by molecular beam epitaxy on GaAs (001) substrates, and rapid thermal annealing was performed on them in the temperature range 500-800 degreesC for 30 s. The as-grown and annealed samples were investigated with Hall measurements, and 77 K photoluminescence. After rapid thermal annealing, the resistivities of step-graded InAlAs buffer layer structures became high. This can avoid leaky characteristics and parasitic capacitance for MM-HEMT devices. The highest sheet carrier density n(s) and mobility mu for MM-HEMT structures were achieved by annealing at 600 and 650degreesC, respectively. The relative intensities of the transitions between the second electron subband to the first heavy-hole subband and the first electron subband to the first heavy-hole subband in the MM-HEMT InGaAs well layer were compared under different annealing temperatures. (C) 2002 American Institute of Physics.
Resumo:
InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.
Resumo:
N-p-n Si/SiGe/Si heterostructure has been grown by a disilane (Si2H6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH3) and diborane (B2H6) as n- and p-type in situ doping sources, respectively. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) measurements show that the grown heterostructure has a good quality, the boron doping is confined to the SiGe base layer, and the Ge has a trapezoidal profile. Postgrowth P implantation was performed to prepare a good ohmic contact to the emitter. Heterojunction bipolar transistor (HBT) has been fabricated using the grown heterostructure and a common-emitter current gain of 75 and a cut-off frequency of 20 GHz at 300 K have been obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Three n-p-n Si/SiGe/Si heterostructures with different layer thickness and doping concentration have been grown by a home-made gas source molecular-beam epitaxy (GSMBE) system using phosphine (PH3) and diborane (B2H6) as n-and p-type in situ doping sources, respectively. Heterojunction bipolar transistors (HBTs) have been fabricated using these structures and a current gain of 40 at 300 K and 62 at 77 K have been obtained. The influence of thickness and doping concentration of the deposited layers on the current gain of the HBTs is discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In situ doping for growth of n-p-n Si/SiGe/Si heterojuction bipolar transistor (HBT) structural materials in Si gas source molecular beam epitaxy is investigated. We studied high n-type doping kinetics in Si growth using disilane and phosphine, and p-type doping in SiGe growth using disilane, soild-Ge, and diborane with an emphasis on the effect of Ge on B incorporation. Based on these results, in situ growth of n-p-n Si/SiGe/Si HBT device structure is demonstrated with designed structural and carrier profiles, as verified from characterizations by X-ray diffraction, and spreading resistance profiling analysis. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
High-quality InGaAs/InAlAs/InP high-electron-mobility transistor (HEMT) structures with lattice-matched or pseudomorphic channels have been grown by molecular-beam epitaxy (MBE). The purpose of this work is to enhance the channel conductivity by changing the epitaxial structure and growth process. With the use of pseudomorphic step quantum-well channel, the highest channel conductivity is achieved at x = 0.7, the corresponding electron mobilities are as high as 12300 (300 K) and 61000 cm(2)/V.s (77 K) with two-dimensional electron gas (2DEG) density of 3.3 x 10(12) cm(-2). These structures are comprehensively characterized by Hall measurements, photoluminescence, double crystal X-ray diffraction and transmission electron microscopy. Strong room-temperature luminescence is observed, demonstrating the high optical quality of the samples. We also show that decreasing the In composition in the InyAl1-yAs spacer is very effective to increase the 2DEG density of PHEMT structures. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this work, the guided modes of a photonic crystal polarization beam splitter (PC-PBS) are studied. We demonstrate that the transmission of a low-loss photonic crystal 120 degrees waveguide bend integrated with the PBS will be influenced if the PBS is multi-moded. We propose a single-moded PC-PBS structure by introducing deformed structures, and it shows twice the enhancement of the transmission. This device with remarkable improvement of performance is promising in the use of photonic crystal integrated circuits design.
Resumo:
A group of prototype integrated circuits are presented for a wireless neural recording micro-system. An inductive link was built for transcutaneous wireless power transfer and data transmission. Power and data were transmitted by a pair of coils on a same carrier frequency. The integrated receiver circuitry was composed of a full-wave bridge rectifier, a voltage regulator, a date recovery circuit, a clock recovery circuit and a power detector. The amplifiers were designed with a limited bandwidth for neural signals acquisition. An integrated FM transmitter was used to transmit the extracted neural signals to external equipments. 16.5 mW power and 50 bps - 2.5 Kbps command data can be received over 1 MHz carrier within 10 mm. The total gain of 60 dB was obtained by the preamplifier and a main amplifier at 0.95Hz - 13.41 KHz with 0.215 mW power dissipation. The power consumption of the 100 MHz ASK transmitter is 0.374 mW. All the integrated circuits operated under a 3.3 V power supply except the voltage regulator.
Resumo:
A seven-state phase frequency detector (S.S PFD) is proposed for fast-locking charge pump based phase-locked loops (CPPLLs) in this paper. The locking time of the PLL can be significantly reduced by using the seven-state PFD to inject more current into the loop filter. In this stage, the bandwidth of the PLL is increased or decreased to track the phase difference of the reference signal and the feedback signal. The proposed architecture is realized in a standard 0.35 mu m 2P4M CMOS process with a 3.3V supply voltage. The locking time of the proposed PLL is 1.102 mu s compared with the 2.347 mu s of the PLL based on continuous-time PFD and the 3.298 mu s of the PLL based on the pass-transistor tri-state PFD. There are 53.05% and 66.59% reductions of the locking time. The simulation results and the comparison with other PLLs demonstrate that the proposed seven-state PFD is effective to reduce locking time.
Resumo:
The mobility of channel electron, for partially depleted Sol nMOSFET in this paper, decreases with the increase of implanted fluorine dose in buried oxide layer. But, the experimental results also show that it is larger for the transistor corresponding to the lowest implantation dose than no implanted fluorine in buried layer. It is explained in tern-is of a "lubricant" model. Mien fluorine atoms are implanted in the top silicon layer, the mobility is the largest. In addition, a positive shift of threshold voltage has also been observed for the transistors fabricated on the Sol wafers processed by the implantation of fluorine. The causes of all the above results are discussed.