68 resultados para Running-based anaerobic sprint test
Resumo:
A reliable validation based on the optical flow visualization for numerical simulations of complex flowfields is addressed in this paper. Several test cases, including two-dimensional, axisymmetric and three-dimensional flowfields, were presented to demonstrate the effectiveness of the validation and gain credibility of numerical solutions of complex flowfields. In the validation, images of these flowfields were constructed from numerical results based on the principle of the optical flow visualization, and compared directly with experimental interferograms. Because both experimental and numerical results are of identical physical representation, the agreement between them can be evaluated effectively by examining flow structures as well as checking discrepancies in density. The study shows that the reliable validation can be achieved by using the direct comparison between numerical and experiment results without any loss of accuracy in either of them.
Resumo:
The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.
Resumo:
The age-strengthening 2024 aluminum alloy was modified by a combination of plasma-based ion implantation (PBII) and solution-aging treatments. The depth profiles of the implanted layer were investigated by X-ray photoelectron spectroscopy (XPS). The structure was studied by glancing angle X-ray diffraction (GXRD). The variation of microhardness with the indenting depth was measured by a nanoindenter. The wear test was carried on with a pin-on-disk wear tester. The results revealed that when the aluminum alloys were implanted with nitrogen at the solution temperature, then quenched in the vacuum chamber followed by an artificial aging treatment for an appropriate time, the amount of AIN precipitates by the combined treatment were more than that of the specimen implanted at ambient temperature. Optimum surface mechanical properties were obtained. The surface hardness was increased and the weight loss in a wear test decreased too.
Resumo:
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Resumo:
Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.
Resumo:
In the present paper, we propose a novel method for measuring the even aberrations of lithographic projection optics by use of optimized phase-shifting marks on the test mask. The line/space ratio of the phase-shifting marks is optimized to obtain the maximum sensitivities of Zernike coefficients corresponding to even aberrations. Spherical aberration and astigmatism can be calculated from the focus shifts of phase-shifting gratings oriented at 0 degrees, 45 degrees, 90 degrees and 135 degrees at multiple illumination settings. The PROLITH simulation results show that, the measurement accuracy of spherical aberration and astigmatism obviously increase, after the optimization of the measurement mark. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the process of interferometric testing, the measurement result is influenced by the system structure, which reduces the measurement accuracy. To obtain an accurate test result, it is necessary to analyze the test system, and build the relationship between the measurement error and the system parameters. In this paper, the influences of the system elements which include the collimated lens and the standard surface on the interferometric testing are analyzed, the expressions of phase distribution and wavefront error on the detector are obtained, the method to remove some element errors is introduced, and the optimization structure relationships are given. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.
Resumo:
Up-converting phosphor technology (UPT)-based lateral-flow immunoassay has been developed for quantitative detection of Yersinia pestis rapidly and specifically. In this assay, 400 nm up-converting phosphor particles were used as the reporter. A sandwich immumoassay was employed by using a polyclonal antibody against F1 antigen of Y. pestis immobilized on the nitrocellulose membrane and the same antibody conjugated to the UPT particles. The signal detection of the strips was performed by the UPT-based biosensor that could provide a 980 nm IR laser to excite the phosphor particles, then collect the visible luminescence emitted by the UPT particles and finally convert it to the voltage as a signal. V-T and V-c stand for the multiplied voltage units for the test and the control line, respectively, and the ratio V-T/V-C is directly proportional to the number of Y pestis in a sample. We observed a good linearity between the ratio and log CFU/ml of Y pestis above the detection limit, which was approximately 10(4) CFU/mI. The precision of the intra- and inter-assay was below 15% (coefficient of variation, CV). Cross-reactivity with related Gram-negative enteric bacteria was not found. The UPT-LF immunoassay system presented here takes less than 30 min to perform from the sample treatment to the data analysis. The current paper includes only preliminary data concerning the biomedical aspects of the assay, but is more concentrated on the technical details of establishing a rapid manual assay using a state-of-the-art label chemistry. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Oxidation-reduction properties of surface sediments are tightly associated with the geochemistry of substances, and reducing organic substances (ROS) from hydrophytes residues may play an important role in these processes. In this study, composition, dynamics, and properties of ROS from anaerobic decomposition of Eichhornia crassipes (Mart.) Solms, Potamogenton crispus Linn, Vallisneria natans (Lour.) Hara, Lemna trisulca Linn and Microcystis flos-aquae (Wittr) Kirch were investigated using differential pulse voltammetry (DPV). The type of hydrophytes determined both the reducibility and composition of ROS. At the peak time of ROS production, the anaerobic decomposition of M. flos-aquae produced 6 types of ROS, among which 3 belonged to strongly reducing organic substance (SROS), whereas there were only 3-4 types of ROS from the other hydrophytes, 2 of them exhibiting strong reducibility. The order of potential of hydrophytes to produce ROS was estimated to be: M. flos-aquae > E. crassipes > L. trisulca > P. crispus approximate to V. natans, based on the summation of SROS and weakly reducing organic substances (WROS). The dynamic pattern of SROS production was greatly different from WROS. The total SROS appeared periodic fluctuation with reducibility gradually weakening with incubation time, whereas the total WROS increased with incubation time. Reducibility of ROS from hydrophytes was readily affected by acid, base and ligands, suggesting that their properties were related to these aspects. In addition to the reducibility, we believe that more attention should be paid to the other behaviors of ROS in surface sediments.
Resumo:
Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.
A new fluorescent quantitative PCR-based in vitro neutralization assay for white spot syndrome virus
Resumo:
A fluorescent quantitative PCR (FQ-PCR) assay utilizing SYBR green I dye is described for quantitation of white spot syndrome virus (WSSV) particles isolated from infected crayfish, Cambarus clarkii. For this assay, a primer set was designed which amplifies, with high efficiency and specificity, a 129 bp target sequence within ORF167 of the WSSV genome. Conveniently, WSSV particles can be added into the FQ-PCR assay with a simple and convenient method to release its DNA. To establish the basis for an in vitro neutralization test, primary cultures of shrimp cells were challenged with WSSV that had been incubated with a polyclonal anti-WSSV serum or with control proteins. The number of WSSV particles released from the cells after these treatments were assayed by FQ-PCR. This test may serve as a method to screen monoclonal antibody pools or recombinant antibody pools for neutralizing activity prior to in vivo animal experiments. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new method to test the hole concentration of p-type GaN is proposed, which is carried out by analyzing the spectral response of p-n(+) structure GaN ultraviolet photodetector. It is shown that the spectral response of the photodetector changes considerably with reversed bias. It is found that the difference between photodetector's quantum efficiency at two wavelengths, i.e. 250 and 361 nm, varies remarkably with increasing reversed bias. According to the simulation calculation, the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted. Based on this effect the carrier concentration of p-GaN can be derived.