132 resultados para RESISTANT SURFACES
Resumo:
We report selective metallization on surfaces of insulators ( glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices. (C) 2007 Optical Society of America.
Resumo:
A new humidity-resistant highly sensitive acrylamide-based photopolymeric holographic recording material has been developed. The photopolymer is resistant to the humidity of environment. Diffraction efficiencies near 50% are obtained with exposure energy of 60 mJ/cm(2) in materials of 150 mu m. thickness. Diphenyl iodonium chloride is added to the material and can increase the exposure sensitivity by a factor of more than 4 (to about 28 mJ/cm(2)). An image has been successfully stored in the material with a small distortion. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The recent re-emergence of tuberculosis, especially the multidrug-resistant cases, has highlighted the importance of screening effective novel drugs against Mycobacterium tuberculosis. In this study, the in vitro activities of small peptides isolated from snake venom were investigated against multidrug-resistant M. tuberculosis. Minimum inhibitory concentrations (MICs) were determined by the Bactec TB-460 radiometric method. A small peptide with the amino acid sequence ECYRKSDIVTCEPWQKFCYREVTFFPNHPVYLSGCASECTETNSKWCCTTDKCNRARGG (designated as vgf-1) from Naja atra (isolated from Yunnan province of China) venom had in vitro activity against clinically isolated multidrug-resistant strains of M. tuberculosis. The MIC was 8.5 mg/l. The antimycobacterial domain of this 60aa peptide is under investigation. (C) 2003 Elsevier Science B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
A new approach, short-oligonucleotide-ligation assay on DNA chip (SOLAC), is developed to detect mutations in rifampin-resistant Mycobacterium tuberculosis. The method needs only four common probes to detect 15 mutational variants of the rpoB gene within 12 h. Fifty-five rifampin-resistant M. tuberculosis isolates were analyzed, resulting in 87.3% accuracy and 83.6% concordance relative to DNA sequencing.
Resumo:
Surface texturization is an effective way to enhance the absorption of light for optoelectronic devices but it also aggravates the surface recombination by enlarging the surface area. In order to evaluate the influence of texture structures on the surface recombination, an effective surface recombination velocity is defined which is assumed to have an equivalent recombination effect on a flat surface. Based on numerical and analytical calculation, the dependences of effective surface recombination on the pattern geometry, the surface recombination velocity, and the diffusion length are analyzed.
Resumo:
p-GaN surfaces are nano-roughened by plasma etching to improve the optical performance of GaN-based light emitting diodes (LEDs). The nano-roughened GaN present a relaxation of stress. The light extraction of the LEDs with nano-roughened surfaces is greatly improved when compared with that of the conventional LEDs without nano-roughening. PL-mapping intensities of the nano-roughened LED epi-wafers for different roughening times present two to ten orders of enhancement. The light output powers are also higher for the nano-roughened LED devices. This improvement is attributed to that nano-roughened surfaces can provide photons multiple chances to escape from the LED surfaces.
Resumo:
InAs self-organized nanostructures were grown with variant deposition thickness and growth rate on closely matched InAlAs/InP by molecular-beam epitaxy. The structural properties. of InAs and InAlAs layer were studied. It is found that the InAs morphology is insensitive to the growth conditions. Transmission electron microscopy and reflectance difference spectroscopy measurements show that the InAlAs matrix presents lateral composition modulation which gives birth to surface anisotropy. Based on the dependence of the InAs morphology on the anisotropy of the InAlAs layer, a modified Stranski-Krastanow growth mode is presented to describe the growth of the nanostructure on a composition-modulated surface.
Resumo:
InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
By using reflectance difference spectroscopy we have studied the in-plane optical anisotropy of GaAs surfaces covered by ultrathin InAs layers. The strain evolution of the GaAs surface with the InAs deposition thickness can be obtained. It is found that the optical anisotropy and the surface tensile strain attain maximum values at the onset of the formation of InAs quantum dots (QDs) and then decrease rapidly as more InAs QDs are formed with the increase of InAs deposition. The origin of the optical anisotropy has been discussed.
Resumo:
Morphology evolution of high-index GaAs(331)A surfaces during molecular beam epitaxy (MBE) growth has been investigated in order to achieve regularly distributed step-array templates and fabricate spatially ordered low-dimensional nano-structures. Atomic force microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature. By using the step arrays formed on GaAs(331)A surfaces as the templates, we have fabricated highly ordered InGaAs nanowires. The improved homogeneity and the increased density of the InGaAs nanowires are attributed to the modulated strain field caused by vertical multi-stacking, as well as the effect of corrugated surface of the template. Photoluminescence (PL) tests confirmed remarkable polarization anisotropy.
Resumo:
A model has been proposed for describing elastic deformation of wafer surfaces in bonding. The change of the surface shape is studied on the basis of the distribution of the periodic strain field. With the condition of diminishing periodic strain away from the interface, Airy stress function has been found that satisfies the elastic mechanical equilibrium. The result reveals that the wavy interface elastically deforms a spatial wavelength from the interface. (C) 2000 American Institute of Physics. [S0021-8979(00)04219-5].
Resumo:
We reported the optical properties of self-assembled In0.55Al0.45As quantum dots grown by molecular beam epitaxy on (001) and (n11)A/B(n = 3,5)GaAs substrates. Two peaks were observed in the photoluminescence (PL) spectra from quantum dots in the (001) substrate and this suggested two sets of quantum dots different in size. For quantum dots in the high-index substrates, the PL spectra were related to the atomic-terminated surface (A or B substrate). The peaks for the B substrate surfaces were in the lower energy position than that for the (001) and A type. In addition, quantum dots in the B substrate have comparatively high quantum efficiency. These results suggested that high-index B-type substrate is more suitable for the fabrication of quantum dots than (001) and A-type substrates at the same growth condition. (C) 2000 American Vacuum Society. [S0734-211X(00)04701-6].