38 resultados para Hydrogen permeation current
Resumo:
Pt/AlGaN/AIN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300K is obtained at a fixed forward current after switching from N-2 to 10%H-2+N-2. The sensor responses under different concentrations from 50ppm H-2 to 10%H-2+N-2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N-2 and air atmosphere at 300 and 373K are compared. Oxygen in air accelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity of the sensor are calculated.
Resumo:
In this paper, platinum (Pt) with a thickness of 45 nm was sputtered on the surface of AlGaN/GaN heterostructure to form the Schottky contact and the back-to-back Schottky diodes were characterized for H-2 sensing at room temperature. Both the forward and reverse current of the devices increased with exposure to H-2 gas, which was attributed to Schottky barrier height reduction caused by hydrogen absorption in the catalytic metals. A shift of 0.7 V at 297 K was obtained at a fixed forward current of 0.1 mA after switching from N-2 to 40% H-2 in N-2. The sensor's responses under different concentrations from 2500 ppm H-2 to 40% H-2 in N-2 at 297 K were investigated. Time response of the sensor at a fixed bias of 1 V was given. Finally, the decrease of the Schottky barrier height and the sensitivity of the sensor were calculated. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Pt/AlGaN/AlN/GaN Schottky diodes have been fabricated and characterized for H-2 sensing. Platinum (Pt) with a thickness of 20nm was evaporated on the sample to form the Schottky contact. The ohmic contact, formed by evaporated Ti/Al/Ni/Au metals, was subsequently annealed by a rapid thermal treatment at 860 degrees C for 30 s in N-2 ambience. Both the forward and reverse current of the device increased greatly when exposed to H-2 gas. The sensor's responses under different hydrogen concentrations from 500ppm to 10% H-2 in N-2 at 300K were investigated. A shift of 0.45V at 297K is obtained at a fixed forward current for switching from N-2 to 10% H-2 in N-2. Time response of the sensor at a fixed bias of 0.5 V was also measured. The turn-on response of the device was rapid, while the recovery of the sensor at N-2 atmosphere was rather slow. But it recovered quickly when the device was exposed to the air. The decrease in the barrier height of the diode was calculated to be about 160meV upon introduction of 10% H-2 into the ambient. The sensitivity of the sensor is also calculated. Some thermodynamics analyses have been done according to the Langmuir isotherm equation.
Resumo:
A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.
Resumo:
Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.
Resumo:
A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 mu M, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors.
Resumo:
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.
Resumo:
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5), (x=0-0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase increases with increasing A] and Mo content in the alloys. The P-C isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (v = 0) to 397.6 mAh g(-1) (x = 0.6) and then decreases to 370.4 mAh g(-1) (x= 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x=0) to 73.8% (x=0.8) at the discharge current density of 1200 mA g(-1). Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x.
Resumo:
A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.
Resumo:
AB(2-x)%LaNi5 (x =0, 1, 5, 10) composite alloys were prepared by melting Zr0.9Ti0.1Ni1.1Mn0.6V0.3 with a small amount of LaNi5 alloy as addition. The microstructure and electrochemical characteristics of the composite alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that LaNi5 addition does not change the basic hexagonal C14 Laves phase of AB(2) alloys, but some second phases have segregated. It was found that the addition of LaNi5 greatly improves the activation property, high-rate dischargeability (HRD) and charge-discharge cycling stability of AB(2) Laves phase alloy. At current density of 1200 mA/g, HRD of the alloy increases from 38.92% (x =0) to 60.09% (x = 10). The capacity retention of the alloy after 200 charge-discharge cycles increases from 57. 10% (x = 0) to 83.86% (x = 5) and 67.31% (x = 10). The improvement of the electrochemical characteristics caused by LaNi5 addition seems to be related to formation of the second phases.
Resumo:
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.
Resumo:
Blend modified polyimide (PI) hollow fiber membranes were used in vapor permeation for gas phase dehydration of ethanol. Dry air sweeping operation was used and the dry air was supplied by a dehumidification membrane module of compressed air. An integrated membrane process was composed. The effects of some factors, such as the modification of membrane materials, the humidity and current velocity of sweeping air, the operation temperature, on the efficiency of dehydration were discussed.
Resumo:
A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
A hydrogen peroxide biosensor based on sol-gel-derived glasses doped with poly(ester sulfonic acid) Eastman AQ 55D was constructed. Thionine (TH), as a mediator, was incorporated in this matrix by electrostatic force between TH+ and the negatively charged sulfonic acid group in Eastman AQ polymer. Performance and characteristics of the sensor were evaluated with respect to response time, sensitivity and storage stability. The enzyme electrode has a sensitivity of 11.36 muA mM(-1) with a detection limit of 5.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady state current within 20 s. (C) 2001 Elsevier Science B.V. All rights reserved.