50 resultados para GA1-XMNXAS
Resumo:
The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.
Resumo:
The electronic structures of the zinc-blende GaN/Ga0.85Al0.15N compressively strained superlattices and quantum wells are investigated using a 6 x 6 Hamiltonian model (including the heavy hole, light hole and spin-orbit splitting band). The energy bands, wavefunctions and optical transition matrix elements are calculated. It is found that the light hole couples with the spin-orbit splitting state even at the k=0 point, resulting in the hybrid states. The heavy hole remains a pure heavy hole state at k=0. The optical transitions from the hybrid valence states to the conduction states are determined by the transitions of the light hole and spin-orbit splitting states to the conduction states. The transitions from the heavy hole, light hole and spin-orbit splitting states to the conduction states obey the selection rule Delta n=0. The band structures obtained in this work will be valuable in designing GaN/GaAlN based optoelectronic devices. (C) 1996 Academic Press Limited
Resumo:
Based on the valence subbands of the zinc-blende GaN/Ga0.85Al0.15N strained quantum wells obtained by a 6x6 Hamiltonian (including heavy hole, light hole and spin-orbit splitting band), optical gain and radiative current density are calculated for the strained quantum well laser structures. The compressive strain in the GaN well region strongly depresses the TM mode optical gain and enhances the TE mode optical gain.
Resumo:
The electronic properties of wide-energy gap zinc-blende structure GaN, A1N, and their alloys Ga(1-x)A1(x)N are investigated using the empirical pseudopotential method. Electron and hole effective mass parameters, hydrostatic and shear deformation potential constants of the valence band at Gamma and those of the conduction band at Gamma and X are obtained for GaN and AIN, respectively. The energies of Gamma, X, L conduction valleys of Ga(1-x)A1(x)N alloy versus Al fraction x are also calculated. The information will be useful for the design of lattice mismatched heterostructure optoelectronic devices based on these materials in the blue light range application. (C) 1995 American Institute of Physics.
Resumo:
The electronic properties of wide energy gap zinc-blende structure GaN, AlN and their alloys Ga1-xAlxN are investigated using the empirical pseudopotential method. Electron and hole Effective mass parameters, hydrostatic and shear deformation potential constants of the valence band at Gamma and those of the conduction band at Gamma and X are obtained. The energies of Gamma, X, L conduction valleys of Ga1-xAlxN alloy versus Al fraction x are also calculated. The information will be useful for the design of lattice mismatched heterostructure optoelectronic devices in the blue light range.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed