109 resultados para Electric substations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using photoluminescence (PL) and time-resolved PL spectra, the optical properties of single InAs quantum dot (QD) embedded in the p-1-n structure have been studied under an applied electric field With the increasing of electric field, the exciton lifetime increases due to the Stark effect. We noticed that the decrease or quenching of PL intensity with increasing the electric field is mainly due to the decrease of the carriers captured by QD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive nonlinearities of InAs/GaAs quantum dots under a dc electric field at photon energies above its band gap energy have been studied using the reflection Z-scan technique. The effect of the dc electric field on the nonlinear response of InAs/GaAs quantum dots showed similar linear and quadratic electro-optic effects as in the linear response regime at low fields. This implies that the electro-optic effect in the nonlinear regime is analogous to the response in the linear regime for semiconductor quantum dots. Our experimental results show the potential for voltage tunability in InAs quantum dot-based nonlinear electro-optic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the spin splitting of the exciton states in semiconductor coupled quantum dots (CQDs) containing a single magnetic ion. We find that the spin splitting can be switched on/off in the CQDs via the sp-d exchange interaction using the electric field. An interesting bright-to-dark exciton transition can be found and it significantly affects the photoluminescence spectrum. This phenomenon is induced by the transition of the ground exciton state, arising from the hole mixing effect, between the bonding and antibonding states. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure, Zeeman splitting, and g factor of Mn-doped CdS nanowires are studied using the k center dot p method and the mean field model. It is found that the Zeeman splittings of the hole ground states can be highly anisotropic, and so can their g factors. The hole ground states vary a lot with the radius. For thin wire, g(z) (g factor when B is along the z direction or the wire direction) is a little smaller than g(x). For thick wire, g(z) is mcuh larger than g(x) at small magnetic field, and the anisotropic factor g(z)/g(x) decreases as B increases. A small transverse electric field can change the Zeeman splitting dramatically, so tune the g(x) from nearly 0 to 70, in thick wire. The anisotropic factor decreases rapidly as the electric field increases. On the other hand, the Zeeman splittings of the electron ground states are always isotropic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the electron-hole pair states in CdTe quantum dot (QD) containing a single Mn2+ ion by the magneto-optical spectrum tuned by the electric field. It is shown that the electric field does not only tune the spin splitting via the sp-d exchange interaction but also affect significantly the anticrossing behavior in the photoluminescence spectrum. This anticrossing is caused by the s-d exchange interaction and/or the hole mixing effect, which depends sensitively on the shape of the QD. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonant tunnelling diodes with different structures were grown. Their photoluminescence spectra were investigated. By contrast, the luminescence in the quantum well is separated from that of other epilayers. The result is obtained that the exciton of the luminescence in the quantum well is partly come from the cap layer in the experiment. So the photoluminescence spectrum is closely related to the electron transport in the resonant tunnelling diode structure. This offers a method by which the important performance of resonant tunnelling diode could be forecast by analysing the integrated photoluminescence intensities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Curie temperature of diluted magnetic semiconductor (DMS) nanowires and nanoslabs is investigated using the mean-field model. The Curie temperature in DMS nanowires can be much larger than that in corresponding bulk material due to the density of states of one-dimensional quantum wires, and when only one conduction subband is filled, the Curie temperature is inversely proportional to the carrier density. The T-C in DMS nanoslabs is dependent on the carrier density through the number of the occupied subbands. A transverse electric field can change the DMS nanowires from the paramagnet to ferromagnet, or vice versae. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linearly polarized light at normal incidence injects a spin current into a strip of two-dimensional electron gas with Rashba spin-orbit coupling. The authors report observation of an electric current when such light is shed on the vincinity of the junction in a crossbar-shaped InGaAs/InAlAs quantum well Rashba system. The polarization dependence of this electric current was experimentally observed to be the same as that of the spin current. The authors attribute the observed electric current to the scattering of the optically injected spin current at the crossing. (c) 2007 American Institute of Physics.