57 resultados para Advanced Very High Resolution Radiometer (AVHRR)
Resumo:
GaSb epilayers grown on GaAs(001) vicinal substrate misoriented towards (111) plane were studied using high-resolution x-ray diffraction (HRXRD). The results show that GaSb epilayers exhibit positive crystallographic tilt and the distribution of 60 degrees misfit dislocations (MDs) is imbalanced. The vicinal substrate also leads to the anisotropy of the mosaic structure, i.e. the lateral coherent lengths in [1 (1) over bar0] directions are larger than those in [110] directions. Furthermore, the full-width at half maximum (FWHM) of the off-axis peaks varies with the inclination angle, which is a result of different dislocation densities in the {111} glide planes.
Determination of the tilt and twist angles of curved GaN layers by high-resolution x-ray diffraction
Resumo:
The full-width at half-maximum (FWHM) of an x-ray rocking curve (XRC) has been used as a parameter to determine the tilt and twist angles of GaN layers. Nevertheless, when the thickness of GaN epilayer reaches several microns, the peak broadening due to curvature becomes non-negligible. In this paper, using the (0 0 l), l = 2, 4, 6, XRC to minimize the effects of wafer curvature was studied systematically. Also the method to determine the tilt angle of a curved GaN layer was proposed while the Williamson-Hall plot was unsuitable. It was found that the (0 0 6) XRC-FWHM had a significant advantage for high-quality GaN layers with the radius curvature of r less than 3.5 m. Furthermore, an extrapolating method of gaining a reliable tilt angle has also been proposed, with which the calculated error can be improved by 10% for r < 2 m crystals compared with the (0 0 6) XRC-FWHM. In skew geometry, we have demonstrated that the twist angles deriving from the (2 0 4) XRC-FWHM are in accord with those from the grazing incidence in-plane diffraction (IP-GID) method for significantly curved samples.
Resumo:
The defects in 3C-SiC film grown on (001) plane of Si substrate were studied using a 200 kV high-resolution electron microscope with point resolution of 0.2 nm. A posterior image processing technique, the image deconvolution, was utilized in combination with the image contrast analysis to distinguish atoms of Si from C distant from each other by 0.109 nm in the [110] projected image. The principle of the image processing technique utilized and the related image contrast theory is briefly presented. The procedures of transforming an experimental image that does not reflect the crystal structure intuitively into the structure map and of identifying Si and C atoms from the map are described. The atomic configurations for a 30 degrees partial dislocation and a microtwin have been derived at atomic level. It has been determined that the 30 degrees partial dislocation terminates in C atom and the segment of microtwin is sandwiched between two 180 degrees rotation twins. The corresponding stacking sequences are derived and atomic models are constructed according to the restored structure maps for both the 30 degrees partial dislocation and microtwin. Images were simulated based on the two models to affirm the above-mentioned results.
Resumo:
In this paper, we analyze light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of An and dielectric material. A subwavelength grating is scanned numerically by the finite difference time domain method in two dimensions. The results show that the transmission field can be confined to a spot with subwavelength width in the far field and can be useful in the application of a high-resolution far-field scanning optical microscope.
Resumo:
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 mum. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A linear photodiode array spectrometer based, high resolution interrogation technique for fiber Bragg grating sensors is demonstrated. Spline interpolation and Polynomial Approximation Algorithm (PAA) are applied to the data points acquired by the spectrometer to improve the original PAA based interrogation method. Thereby fewer pixels are required to achieve the same resolution as original. Theoretical analysis indicates that if the FWHM of a FBG covers more than 3 pixels, the resolution of central wavelength shift will arrive at less than 1 pm. While the number of pixels increases to 6, the nominal resolution will decrease to 0.001 pm. Experimental result shows that Bragg wavelength resolution of similar to 1 pm is obtained for a FBG with FWHM of similar to 0.2 nm using a spectrometer with a pixel resolution of similar to 70 pm.
Resumo:
Sharp and rich photoluminescence lines accociated with free exciton (FE), excitons bound to neutral acceptors (A0X) and donors (D0X) in molecular beam epitaxially (MBE) grown (211) CdTe/(211)B GaAs have been reported for the first time. The results show that the (211) CdTe/(211)B GaAs grown under optimized conditions could have as high a crystal perfection as those grown on lattice-matched substrates.
Resumo:
The diamond (100) facets deposited at initial 1.0% CH4 have been investigated using high resolution electron energy loss spectroscopy (HREELS). The diamond (100) facets grown at 800-degrees-C are terminated by CH2 radicals, and there is no detectable frequency shift compared with the characteristic frequencies of molecular subgroup CH2. Beside the CH2 vibration loss, CH bend loss (at 140 meV) of locally monohydrogenated dimer is detected for the diamond (100) facets grown at 1000-degrees-C. Dosing the (100) facets grown at 800-degrees-C with atomic hydrogen at 1*10(-6) mbar, the loss peak at 140 meV appears. It is suggested that there are enough separately vacant sites and uniformly dispersed monohydrogenated dimers on (100) facets. This structure relaxes the steric repulsion between the adjacent hydrogen atoms during the diamond (100) surface growth.
Resumo:
A new method of differentiating the deep level transient spectroscopy (DLTS) signal is used to increase the resolution of conventional DLTS. Using this method, more than one single deep level with small differences in activation energy or capture cross section, which are often hard to determine by conventional DLTS, can be distinguished. A series of lattice-mismatched InxGa1-xP samples are measured by improved DLTS to determine accurately the activation energy of a lattice-mismatch-induced deep level. This level cannot be clearly determined using conventional DLTS because the two signals partly overlap each other. Both the signals are thought to originate from a phosophorus vacancy and lattice-mismatch-induced defect.
Resumo:
A new-type silicon material, silicon on defect layer (SODL) was proved to have a very high quality surface microstructure which is necessary for commercially feasible high-density very large scale integrated circuits (VLSI). The structure of the SODL material was viewed by transmission electron microscopy. The SODL material was also proved to have a buried defect layer with an insulating resistivity of 5.7 x 10(10) OMEGA-cm.
Resumo:
A new method using an atomic-resonance filter and deconvolution techniques has been developed to acquire high-resolution spectra of atmospheric Rayleigh-Mie scattering. In the deconvolution process, the difficulty of the undetermined division 0/0 is overcome by a fitting method. Preliminary laboratory experimental results on 90-deg scattering show that with a signal-to-noise ratio of 20, the scattered Rayleigh-Mie spectrum may be retrieved in agreement with the theoretical analysis.
Resumo:
We present photoluminescence studies on highly dense two-dimensional electron gases in selectively Si delta-doped GaAs/In0.18Ga0.82As/Al0.25Ga0.75As quantum wells (N(s) = 4.24 x 10(12) cm-2). Five well-resolved photoluminescence lines centered at 1.4194, 1.4506, 1.4609, 1.4695 and 1.4808 eV were observed, which are attributed to the subband excition emission. The subband separations clearly exhibit the feature of a typical quantum well with triangle and square potential. These very intensive and sharp luminescence peaks with linewidths of 2.2 to 3.5 meV indicate the high quality of the structures. Their dependence on the excitation intensity and temperatures are also discussed.