280 resultados para LOW-TEMPERATURE GROWTH
Resumo:
A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]
Resumo:
We obtain low-density charged InAs quantum dots with an emission wavelength below 1 mu m using a low InAs growth rate. The quantum dots have a bimodal size distribution with an emission wavelength of around 1340 nm and 1000 nm, respectively. We observe the photoluminescence of the singly charged exciton in the modulation doped quantum dots in 77 K.
Resumo:
High-density and uniform well-aligned ZnO sub-micron rods are synthesized on the silicon substrate over a large area. The morphology, and structure of the ZnO sub-micron rods are investigated by x-ray diffraction, transmission electron microscopy and Raman spectra. It is found that the ZnO sub-micron rods are of high crystal quality with the diameter in the range of 400-600 nm and the length of several micrometres long. The optical properties were studied bill photoluminescence spectra. The results show that the intensity of the ultraviolet emission at 3.3 eV is rather high, meanwhile the deep level transition centred at about 2.38 eV is weak. The free exciton emission could also be observed at low, temperature, which implies the high optical quality of the ZnO sub-micron rods. This growth technique provides one effective way to fabricate the high crystal quality ZnO nanowires array, which is very important for potential applications in the new-type optoelectronic nanodevices.
Resumo:
Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.
Resumo:
The influence of low-temperature AlN buffer layer thickness on GaN epilayer was investigated by triple-axis X-ray diffraction (XRD) and photoluminescence measurements. A method was proposed to measure the screw and edge dislocation densities by XRD. It was found that the buffer layer thickness was a key parameter to affect the quality of GaN epilayer and an appropriate thickness resulted in the best structural and optical properties except the lateral grain size. After the thickness exceeding the appropriate value, the compressive stress in the epilayer decreased as the thickness increased, which led to the redshift of the near-band edge luminescence. The experimental results showed the buffer layer thickness had more influence on edge dislocation than screw type and the former was perhaps the main source of the yellow band. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Self-aligned InAs quantum wires (QWRs) or three-dimensional (3D) islands are fabricated on GaAs(331)A substrates by molecular beam epitaxy (MBE). InAs QWRs are selectively grown on the step edges formed by GaAs layers. The surface morphology of InAs nanostructures is carefully investigated by atomic force microscopy (AFM) measurements. Different growth conditions, such as substrate temperature, growth approaches, and InAs coverage, exert a great effect on the morphology of InAs islands. Low substrate temperatures favour the formation of wirelike nanostructures, while high substrate temperatures favour 3D islands. The shape transition is attributed to the trade-off between surface energy and strain energy. A qualitative agreement of our experimental data with the theoretical results derived from the model proposed by Tersoff and Tromp is achieved.
Resumo:
The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effect of the N/Al ratio of AlN buffers on the optical and crystal quality of GaN films, grown by metalorganic chemical vapor deposition on Si(111) substrates, has been investigated. By optimizing the N/Al ratio during the AlN buffer, the threading dislocation density and the tensile stress have been decreased. High-resolution X-ray diffraction exhibited a (0002) full-width at half-maximum as low as 396 acrsec. The variations of the tensile stress existing in the GaN films were approved by the redshifts of the donor bound exiton peaks in the low-temperature photoluminescence measurement at 77 K. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Variable-temperature photoluminescence (PL) spectra of Si-doped self-assembled InGaAs quantum dots (QDs) with and without GaAs cap layers were measured. Narrow and strong emission peak at 1075 nm and broad and weak peak at 1310 nm were observed for the buried and surface QDs at low temperature, respectively. As large as 210 meV redshift of the PL peak of the surface QDs with respect to that of the buried QDs is mainly due to the change of the strain around QDs before and after growth of the GaAs cap layer. Using the developed localized-state luminescence model, we quantitatively calculate the temperature dependence of PL peaks and integrated intensities of the two samples. The results reveal that there exists a large difference in microscopic mechanisms of PL thermal quenching between two samples. (c) 2005 American Institute of Physics.
Resumo:
InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.
Resumo:
We have studied magnetic and transport properties of insulating and metallic (Ga,Mn)As layers before and after annealing. A dramatic increase of the ferromagnetic transition temperature T-C by postgrowth annealing has been realized in both insulating and metallic (Ga,Mn)As. The as-grown insulating (Ga,Mn)As can be turned into metallic by the low-temperature annealing. For all the metallic (Ga,Mn)As, a characteristic feature in the temperature dependence of sheet resistance appears around T-C. This phenomenon may provide a simple and more convenient method to determine the T-C of metallic (Ga,Mn)As compared with superconducting quantum interference device (SQUID) measurement. Moreover, the T-C of the metallic (Ga,Mn)As obtained by this way is in good agreement with that measured by a SQUID magnetometer. (C) 2005 American Institute of Physics.
Resumo:
A simple process for fabricating low-cost Si-based continuously tunable long-wavelength resonant-cavity-enhanced (RCE) photodetectors has been investigated. High-contrast SiO2/Si(Deltan similar to2) was employed as mirrors to eliminate the need to grow thick epitaxial distributed Bragg reflectors. Such high-reflectivity SiO2/Si mirrors were deposited on the as-grown InGaAs epitaxy layers, and then were bonded to silicon substrates at a low temperature of 350 C without any special treatment on bonding surfaces, employing silicate gel as the bonding medium. The cost is thus decreased. A thermally tunable Si-based InGaAs RCE photodetector operating at 1.3-1.6 mum was obtained, with a quantum efficiency of about 44% at the resonant wavelength of 1476 nm and a tuning range of 14.5 nm. It demonstrates a great potential for industry processes. (C) 2005 American Institute of Physics.
Resumo:
Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cr-doped InAs self-organized diluted magnetic quantum dots (QDs) are grown by low-temperature molecular-beam epitaxy, Magnetic measurements reveal that the Curie temperature of all the InAs:Cr QDs layers with Cr/In flux ratio changing from 0.026 to 0.18 is beyond 400 K. High-resolution cross sectional transmission electron microscopy images indicate that InAs:Cr QDs are of the zincblende structure. Possible origins responsible for the high Curie temperature are discussed.
Resumo:
We have investigated the growth of AlGaN epilayers on a sapphire substrate by metalorganic chemical vapour deposition using various low-temperature ( LT) AlN buffer thicknesses. Combined scanning electron microscopy and cathodoluminescence investigations reveal the correlation between the surface morphology and optical properties of AlGaN films in a microscopic scale. It is found that the suitable thickness of the LT AlN buffer for high quality AlGaN growth is around 20 nm. The Al compositional inhomogeneity of the AlGaN epilayer is attributed to the low lateral mobility of Al adatoms on the growing surface.