434 resultados para Fluorescence Resonance Energy Transfer
Resumo:
Silicon nitride films were deposited by plasma-enhanced chemical-vapour deposition. The films were then implanted with erbium ions to a concentration of 8 x 10(20) cm(-3). After high temperature annealing, strong visible and infrared photoluminescence (PL) was observed. The visible PL consists mainly of two peaks located at 660 and 750 nm, which are considered to originate from silicon nanocluster (Si-NCs) and Si-NC/SiNx interface states. Raman spectra and HRTEM measurements have been performed to confirm the existence of Si-NCs. The implanted erbium ions are possibly activated by an energy transfer process, leading to a strong 1.54 mu m PL.
Resumo:
Zn2SiO4:Mn2+, Zn2SiO4:Eu3+ and Zn2SiO4:Mn2+ Eu3+ phosphors were prepared by a sol-gel process and their luminescence spectra were investigated. The emission bands from intra-ion transitions of Mn2+ and Eu3+ samples were studied as a function of pressure. The pressure coefficient of Mn2+ emission was found to be -25.3 +/- 0.5 and -28.5 +/- 0.9 meV/GPa for Zn2SiO4:Mn2+ and Zn2SiO4:Mn2+ Eu3+, respectively. The Eu3+ emission shows only weak pressure dependence. The pressure dependences of the Mn2+ and Eu3+ emissions in Zn2SiO4:Mn2+ Eu3+ are slightly different from that in Zn2SiO4:Mn2+ and Zn2SiO4:Eu3+ samples, which can be attributed to the co-doping of Mn2+ and Eu3+ ions. The Mn2+ emission in the two samples, however, exhibits analogous temperature dependence and similar luminescence lifetimes, indicating no energy transfer from Mn2+ to Eu3+ occurs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Deep level transient spectroscopy measurements were performed on the metal organic chemical vapor deposition epitaxially grown GaN before and after the implantation with Er. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300, 0.188, 0.600 and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees for 30 min. The origins of the deep defect levels were discussed. The photoluminescence (PL) properties of Er-implanted GaN thin films were also studied. After annealing at 900 degrees for 30 min in a nitrogen flow, Er-related 1.54 mu m luminescence peaks could be observed for the Er-implanted GaN sample. Moreover, the energy-transfer and recombination processes of the Er-implanted GaN film were described. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Deep level transient spectroscopy measurements were used to characterize the electrical properties of metal organic chemical vapor deposition grown undoped, Er-implanted and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300 eV, 0.188 eV, 0.600 eV and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280 eV, 0.190 eV, 0.610 eV and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30min. The origins of the deep defect levels are discussed. After annealing at 900 degrees C for 30min in a nitrogen flow, Er-related 1538nm luminescence peaks could be observed for the Er-implanted GaN sample. The energy-transfer and luminescence mechanism of the Er-implanted GaN film are described.
Resumo:
A passively Q-switched Yb: YAG microchip laser has been constructed by using a doped GaAs as the saturable absorber as well as the output coupler. At 13.5 W of pump power the device produces high-quality 3.4 muJ 52 ns pulses at 1030nm with a pulse repetition rate of 7.8kHz in a TEM00-mode.
Resumo:
Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.
Resumo:
Terbium-doped zinc oxide nanoparticles have been prepared by hydrolyzing zinc acetate and terbium acetate. Nanoparticle-matrix-facilitated photoluminescence which is related to Tb3+ ions has been observed for ZnO:Tb nanoparticles. The dependence of emission intensity on doping concentration of Tb3+ ions has been investigated. An energy transfer from excited states of ZnO hosts to dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increasing Tb content at the expense of emission from defect states in ZnO matrix.
Resumo:
The photo- and thermo-stimulated luminescence (PSL and TSL) of BaFCl0.8Br0.2:Sm2+,Sm3+ phosphors were investigated. It is found that the stimulated luminescence intensity of Sm2+ is almost equal to that of Sm3+ even if the content of Sm2+ is much lower than that of Sm3+. Only the stimulated luminescence of Sm2+ is observed in the sample in which the content of Sm2+ is much higher than Sm3+, demonstrating that the PSL or TSL efficiency of Sm2+ is much higher than that of Sm3+. This is attributed to the effective overlap of the e-h emission with the absorption of Sm2+ centers which may make the energy transfer from the electron-hole pairs to Sm2+ effectively. In BaFCl0.8Br0.2:Sm2+,Sm3+ the stimulated luminescence is considered to be occurred via the recombination of photoreleased electrons with the [Sm2+ + h] or [Sm3+ + h] complex and the energy transfer from the electron-hole pairs to the luminescence centers (Sm2+ and Sm3+) is concerned to be the major step to determine the stimulated luminescence efficiency. The X-ray-induced stimulated luminescence is compared and connected to the photon gated hole burning. The net result of the two processes is quite similar and may be comparable. It is suggested from the observations of stimulated luminescence that electron migration between Sm2+ and Sm3+ is not the major process, color centers may play an important role in hole burning. The information from stimulated luminescence is helpful for the understanding of the hole burning mechanism. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel miniature cylindrical combustor, whose chamber wall is made of porous material, has been designed and experimented for reducing heat loss and enhancing flame stability. The combustor has the function of reducing wall heat loss, extending residence time and avoiding radical chemical quenching with a self-thermal insulation concept in which heat loss reduction is obtained by the opposite flow directions between thermal energy transfer and mass flow. The methane/air mixture flames formed in the chamber are blue and tubular in shape. Between the flames and the porous wall, there is a thin unburned film that plays a significant role in reducing the flames' heat loss and keeping the flames stable. The porous wall temperature was 150-400 degrees C when the temperatures of the flames and exhaust gas were more than 1200 degrees C. When the equivalence ratio phi < 1.0, the methane conversion ratio was above 95%; the combustion efficiency was near 90%; and the overall sidewall heat loss was less than 15% in the 1.53 cm(3) chamber. Moreover, its combustion efficiency is stable in a wider combustion load (input power) range.
Resumo:
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
Resumo:
SiOx films with oxygen concentrations ranging 13-46 at.% were deposited by plasma enhanced chemical vapor deposition (PECVD) technique using: pure SiH4 and N2O mixture. Erbium was then implanted at an energy of 500 KeV with dose of 2x10(15) ions/cm(2). The samples were subsequently annealed in N-2 for 20 sec at temperatures of (300-950 degrees C). Room temperature (RT) photo-luminescence (PL) data were collected by Fourier Transform Infrared Spectroscopy (FTIS) with an argon laser at a wavelength of 514.5 nm and an output power from 5 to 2500 mw. The intense room-temperature luminescence was observed around 1.54 mu m. The luminescence intensity increases by 2 orders of magnitude as compared with that of Er-doped Czochralski (CZ) Si. We found that the Er3+ luminescence depends strongly on the SiOx microstructure. Our experiment also showed that the silicon grain radius decreased with increasing oxygen content and finally formed micro-crystalline silicon or nano-crystalline silicon. As a result, these silicon small particles could facilitate the energy transfer to Er3+ and thus enhanced the photoluminescence intensity.
Resumo:
Erbium-implanted silicones were treated by lamp-heating rapid thermal annealing (RTA). Two types of erbium-related photoluminescence spectra appear under different anneal temperatures. 750 degrees C annealing optimizes the luminescence intensity, which does not change with anneal time. Exciton-mediated energy transfer model in erbium-doped silicon was presented. The emission intensity is related to optical active erbium concentration, lifetime of excited Er3+ ion and spontaneous emission time. The thermal quenching of the erbium luminescence in Si is caused by thermal ionization of erbium-bound exciton complex and nonradiative energy backtransfer processes, which correspond to the activation energy of 6.6 meV and 47.4 meV respectively.
Resumo:
In present study, the transition of thermocapillary convection from the axisymmetric stationary flow to oscillatory flow in liquid bridges of 5cst silicon oil (aspect ratio 1.0 and 1.6) is investigated in microgravity conditions by the linear instability analysis. The corresponding marginal instability boundary is closely related to the gas/liquid configuration of the liquid bridge noted as volume ratio. With the increasing volume ratio, the marginal instability boundary consists of the increasing branch and the decreasing branch. A gap region exists between the branches where the critical Marangoni number of the corresponding axisymmetric stationary flow increases drastically. Particularly, a unique axisymmetric oscillatory flow (the critical azimuthal wave number is m=0) in the gap region is reported for the liquid bridge of aspect ratio 1.6. Moreover, the energy transfer between the basic state and the disturbance fields of the thermocapillary convection is analyzed at the corresponding critical Marangoni number, which reveals different major sources of the energy transfer for the development of the disturbances in regimes of the increasing branch, the gap region and the decreasing branch, respectively.