259 resultados para EXCITED HYPERONS
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
Glass spherical microcavities containing CdSexS1-x semiconductor quantum dots (QDs) are fabricated. The coupling between the optical emission of embedded CdSexS1-x QDs and spherical cavity modes is realized. When the luminescence of QDs is excited by a laser beam, the strong whispering gallery mode resonance with high Q factors is achieved in the photoluminescence spectra. (C) 2001 American Institute of Physics.
Resumo:
Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].
Resumo:
Terbium-doped zinc oxide nanoparticles have been prepared by hydrolyzing zinc acetate and terbium acetate. Nanoparticle-matrix-facilitated photoluminescence which is related to Tb3+ ions has been observed for ZnO:Tb nanoparticles. The dependence of emission intensity on doping concentration of Tb3+ ions has been investigated. An energy transfer from excited states of ZnO hosts to dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increasing Tb content at the expense of emission from defect states in ZnO matrix.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Eu2+-doped ZnS nanoparticles with an average size of around 3 nm were prepared, and an emission band around 530 nm was observed. By heating in air at 150 degrees C, this emission decreased, while the typical sharp line emission of Eu3+ increased. This suggests that the emission around 530 nm is from intraion transition of Eu2+: In bulk ZnS:Eu2+, no intraion transition of Eu2+ was observed because the excited states of Eu2+ are degenerate with the continuum of the ZnS conduction band. We show that the band gap in ZnS:Eu2+ nanoparticles opens up due to quantum confinement, such that the conduction band of ZnS is higher than the first excited state of Eu2+, thus enabling the intraion transition of Eu2+ to occur.
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.
Resumo:
Using a newly-developed population mixing technique we have studied the exciton dynamics in self-organized InAs/GaAs quantum dots (QDs). It is found that the exciton lifetime in self-organized InAs/GaAs QDs is around 1 ns, almost independent of InAs layer thickness. The temperature dependence of the exciton lifetime varies from sample to sample, but no obvious experimental evidence was found that the lifetime is related to the delta-function of density of states in QDs. We have also found that the population mixing technique can be used to directly reveal the band-filling effect in the excited states of the QDs.
Resumo:
The Raman spectra of ion-implanted highly oriented pyrolytic graphite (HOPG) are reported, in which an additional mode at 1083 cm(-1) and three doublet structures in the positions of similar to 1350, similar to 2450, and similar to 2710 cm(-1) are revealed. Noticeable frequency shifts are observed for all the Raman bands between the spectra excited with different laser powers, which are interpreted as the pure temperature effect and a downshift in the C-C stretching frequency induced by the thermal expansion. Moreover, the pure temperature effect (d omega/dT)(V) without anharmonic contribution is achieved in pristine HOPG. The results suggest that the pure temperature effect without anharmonic contribution plays an important role in the frequency shifts with temperature. (C) 1999 American Institute of Physics. [S0003-6951(99)01313-3].
Resumo:
Radiative transition in delta-doped GaAs superlattices with a weak coupling was investigted at low temperature, The experimental results show that the transitions from both electron ground state and excited state to hole state have been observed, Based on the effective mass approximation theory, the structures of energy band and photoluminescence spectra for the samples used were calculated. Comparing the experiment with theory, a good agreement was abtained.
Resumo:
Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We present a detailed study of the interband excitonic transitions of InAs/GaAs self-organized quantum dots (QDs) based on photovoltage (PV) photoreflectance (PR) and photoluminescence (PL) spectroscopy. At room temperature, the interband absorption transitions of QDs have been observed by using PV spectrum, which clearly exhibits four well-resolved excitonic absorption peaks. The absorption line shape is Gaussian-like. Furthermore, the corresponding excitonic transitions are also observed in PR experiment at 77 K. The first derivative of a Gaussian profile can fit the experimental data well. (C) 1998 American Institute of Physics. [S0003-6951(98)00743-8]
Resumo:
CdS nanoparticies were prepared in air and their stability by air annealing was studied. A small change in crystal structure and particle size was observed by air annealing, but a rapid reduction in fluorescence was found. Through investigation, it is revealed that it is the surface change or reconstruction rather than the variation of the size or structure that decreases the fluorescence. The emission of the particles consists with two peaks which are dependent on the excitation energy. The two peaks are considered to be arisen from "two" different sizes of nanoparticles and may be explained in terms of selectively excited photoluminescence. Finally we discuss why the discrete state of nanoparticles are able to be resolved in the photoluminescence excitation spectrum, but could not be differentiated in the absorption spectrum.