330 resultados para double heterojunction
Resumo:
于2010-11-17批量导入
Resumo:
The dynamic effect of electrons in a double quantum well under the influence of a monochromatic driving laser field is investigated. Closed-form solutions for the quasienergy and Floquet states are obtained with the help of SU(2) symmetry. For the case of weak interlevel coupling, explicit expressions of the quasienergy are presented by the use of perturbation theory, from which it is found that as long as the photon energy is not close to the tunnel splitting, the electron will be confined in an initially occupied eigenstate of the undriven system during the whole evolution process. Otherwise, it will transit between the lowest two levels in an oscillatory behavior.
Resumo:
Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.
Resumo:
The thermal population in photocarrier systems coupled by hole mixing tunneling is studied by an analysis of the high energy tails in cw photoluminescence spectra of asymmetric coupled double wells. Photocarriers in wide well are heated due to hole transfer from the narrow well through resonant tunneling as well as by photon heating. The influences of the excitation intensity and lattice temperature on the tunneling transfer and thermal population are discussed.
Resumo:
Surface plasmon enhanced antireflection coatings for GaAs solar cells have been designed theoretically. The reflectance of double-layer antireflection coatings (ARCs) with different suspensions of Ag particles is calculated as a function of the wavelength according to the optical interference matrix and the Mie theory. The mean dielectric concept was adopted in the simulations. A significant reduction of reflectance in the spectral region from 300 to 400 nm was found to be beneficial for the design of ARCs. A new SiO_2/Ag-ZnS double-layer coating with better antireflection ability can be achieved if the particle volume fraction in ZnS is 1%-2%.
Resumo:
High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.
Resumo:
A novel distribute feedback (DFB) laser which gave two different wavelengths under two distinct work conditions was fabricated. The laser consists of two Bragg gratings with different periods corresponding to wavelength spacing of 20 nm in an identical active area. When driving current was injected into one of the different sections separately, two different wavelengths at 1542.4 and 1562.5 nm were realized. The side mode suppression ratio (SMSR) of 45 dB or more both for the two Bragg wavelengths were achieved. The fabricating process of the laser was just the same as that of traditional DFB laser diode. This device can be potentially used in coarse wavelength division multiplexer (CWDM) as a promising light source and the technology idea can be used to enlarge the transmission capacity in metro area network (MAN).
Resumo:
A novel structure of spot-size converter is designed to allow low loss and large alignment tolerance between single-mode rib waveguide devices and fiber arrays theoretically. The spot-size converter consists of a tapered rib core region and a double-cladding region. Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region. The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular. A novel,easy method of fabricating tapered rib spot-size converter based on silicon-on-insulator material is proposed.
Resumo:
Monolithic electro-absorption modulated distributed-feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0.5V to 3.0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1.5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.
Resumo:
The high temperature (300~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabricated by low-pressure chemical vapor deposition on Si (100) substrates are investigated.The obtained diode with best rectifying properties has 1.8×104 of ratio at room temperature,and slightly rectifying characteristics with 3.1 of rectification ratio is measured at 480K of an ambient temperature .220V of reverse breakdown voltage is acquired at 300K.Capacitance-voltage characteristics show that the abrupt junction model is applicable to the SiC/Si HJD structure and the built-in voltage is 0.75V.An ingenious equation is employed to perfectly simulate and explain the forward current density-voltage data measured at various temperatures.The 3C-SiC/Si HJD represents a promising approach for the fabrication of high quality heterojunction devices such as SiC-emitter heterojunction bipolar transistors.
Resumo:
Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown on φ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD). The initial stage of carbonization and the surface morphology of carbonization layers of Si(100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM). It is shown that the optimized carbonization temperature for the growth of voids-free 3S-SiC on Si (100) substrates is 1100 ℃. The electrical properties of SiC layers are characterized using Van der Pauw method. The I-V, C-V, and the temperature dependence of I-V characteristics in n-3C-SiC-p-Si heterojunctions with AuGeNi and Al electrical pads are investigated. It is shown that the maximum reverse breakdown voltage of the n-3C-SiC-p-Si heterojunction diodes reaches to 220V at room temperature. These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).
Resumo:
We investigate the electron transport through a double-slit-like Aharonov-Bohm (AB) ring with a quantum dot (QD) embedded in one of its arms. Considering both the resonance of the dot and interference effect, the magnitude and phase of the transmission amplitude through the QD are calculated using Green's function approach. The numerical results are in good agreement with the experimental observations.
Resumo:
于2010-11-23批量导入