352 resultados para diode-end-pumped
Resumo:
High-quality neodymium doped GGG laser crystals have been grown by Czochralski (Cz) method. Results of Nd:GGG thin chip laser operating at 1.064 μm pumped by Ti:sapphire laser operating at 808 nm were reported. The slop efficiency was as high as 20%.
Resumo:
利用激光二极管(LD)抽运新型Na.Yb共掺CaF2(Na.Yb:CaF2)晶体,获得了1.05μm的自调Q激光输出。利用透射率1%的耦合输出镜,得到最低激光输出的抽运阈值功率仅为70mW。在透射率为2%的输出镜条件下,得到最大输出激光功率为390mw,此时激光的斜度效率达到20%。实验详细记录了自调Q脉冲的周期和宽度随抽运功率的变化关系,随着抽运功率的增加,自调Q脉冲的周期和宽度呈指数衰减。同时,还采用单棱镜进行光谱调谐实验,获得了1036~1059nm的自调Q激光调谐输出。
Resumo:
Passive Q-switching of a diode-pumped Yb:LYSO laser at 1060 nm with a Yb3+ ions-doped CaF2 crystal without the excited-state absorption (ESA) was demonstrated. An average output power of 174 mW with pulse duration of 5.6 mu s and repetition rate of 27 kHz have been obtained under the unoptimized conditions. And the Q-switching conversion efficiency was as high as 51.7%. (c) 2007 Optical Society of America.
Resumo:
为实现室温下小型化、高效率的1.9μm激光输出,采用793.5 nm激光二极管泵浦Tm:YAP晶体,晶体采用热电制冷及风冷的方式控制在18℃,采用1∶1的聚焦耦系统,获得功率为2.2 W、中心波长为1928 nm的激光输出,光光转换效率为31%,斜率效率达41%。对影响激光输出的耦合输出率、腔型、腔长、晶体工作温度等因素进行了实验分析,实验结果表明:输出功率的变化与温度基本成线性关系,当增加激光谐振腔长时,由于高阶模式损耗加大以及晶体热透镜效应的加重导致腔内损耗加大,输出功率和斜率效率都有所下降。
Resumo:
文章报道了室温下二极管泵浦Tm:YAP激光器,最大输出功率5.2瓦,波长为1981nm,斜率效率是30%。实验测量800nm左右晶体的吸收谱以及1800nm附近的荧光发射谱。此外,讨论了输出功率随晶体工作温度关系。
Resumo:
应用中频感应提拉法生长出掺杂浓度为10 at.-%的Yb:YAG与Yb:YAP晶体,对比了室温下两种晶体的吸收和发射光谱特性。结果表明,Yb:YAG晶体比Yb:YAP晶体有更好的激光性能和低的阈值;同时对比发现,Yb:YAP晶体的吸收截面是Yb:YAG晶体的2.16倍,它容易实现LD泵;由于Yb:YAP晶体的各向异性,它有轴向效应明显,它可以产生偏振激光。
Resumo:
This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.
Resumo:
采用中频感应提拉法生长了高质量的Tm:Y2SiO5(Tm:YSO)晶体,测定了晶体的晶格常数和分凝系数.运用劳厄照相法确定了单斜晶系Tm:YSO晶体的三个偏振轴〈010〉,D1和D2,在室温下测量了三个偏振轴方向的吸收光谱、荧光光谱和荧光寿命,计算了晶体吸收峰的吸收线宽和吸收截面.研究发现,相对于其他两个偏振轴方向,D1方向在790 nm处出现较强的吸收峰,同时在2μm附近出现了一定强度的发射峰,D1方向的吸收截面较大,荧光寿命较长.Tm:YSO晶体适用于AlGaAs二极管抽运固体激光器,在2μm波段固体激光器的应用上将有很大的发展潜力.
Resumo:
The genus Digramma (Cestoda: Pseudophyllidea) described by Cholodkovsky in 1915 differs from the genus Ligula only by the number of the reproductive organs per proglottis. However, the occurrence of transitional forms in Digramma raises much confusion concerning its generic validity. In the present study, cestodes previously designated as Digramma and Ligula were collected from lakes in the lower and middle reaches of the Yangtze River, and also from Qinghai Lake on Qingzang plateau, China. The entire internal transcribed spacer of the ribosomal DNA (ITS rDNA) and 5' end of 28S rDNA were compared between the Digramma and Ligula specimens. The low level of nucleotide variation between the two genera may imply that cestodes in the genus Digramma are paraphyletic to the Ligula genus, and Digramma is a synonym of Ligula. However, whether previously identified Digramma cestodes represent different species in the genus Ligula requires further investigation.
Resumo:
To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes
Resumo:
We report on the study of a single-photon-emitting diode at 77 K. The device is composed of InAs/GaAs quantum dots embedded in the i-region of a p-i-n diode structure. The high signal to noise ratio of the electroluminescence, as well as the small second order correlation function at zero-delay g((2))(0), implies that the device has a low multiphoton emission probability. By comparing the device performances under different excitation conditions, we have, in detail, discussed the basic parameters, such as signal to noise ratio and g((2))(0), and provided some useful information for the future application. (c) 2008 American Institute of Physics.
Resumo:
Blue-green GaN-based vertical cavity surface emitting lasers (VCSELs) were fabricated with two dielectric Ta2O5/SiO2 distributed Bragg reflectors. Lasing action was observed at a wavelength of 498.8 nm at room temperature under optical pumping. Threshold energy density and emission linewidth were 189 mJ/cm(2) and 0.15 nm, respectively. The result demonstrates that blue-green VCSELs can be realised using III-nitride semiconductors.
Resumo:
Pt Schottky diode gas sensors for CO are fabricated using AlGaN/ GaN high electron mobility transistor ( HEMTs) structure. The diodes show a remarkable sensor signal (3 mA, in N-2; 2mA in air ambient) biased 2V after 1% CO is introduced at 50 degrees C. The Schottky barrier heights decrease for 36meV and 27meV in the two cases respectively. The devices exhibit a slow recovery characteristic in air ambient but almost none in the background of pure N2, which reveals that oxygen molecules could accelerate the desorption of CO and offer restrictions to CO detection.