432 resultados para Voie P
Resumo:
Ge-on-silicon-on-insulator p-i-n photodetectors were fabricated using an ultralow-temperature Ge buffer by ultrahigh-vacuum chemical vapor deposition. For a detector of 70-mu m diameter, the 1-dB small-signal compression power was about 110.5 mW. The 3-dB bandwidth at 3-V reverse bias was 13.4 GHz.
Resumo:
We report the passivation of two deep copper-related acceptor levels in Cu-diffused p-type GaAs by the group-I element lithium. The deep-level-transient-spectroscopy (DLTS) signals of the well-known Cu-related levels with apparent activation energies 0.15 eV and 0.40 eV disappear in Cu-diffused samples when they are diffused with Li, but can be reactivated by annealing. Photoluminescence measurements show a corresponding disappearance and reappearance of the copper-related luminescence at 1.36 eV. Also we observe with DLT'S an energy level at E(V) + 0.32 eV in the Cu-Li-diff-used samples. The level is neither present in the Cu-diffused samples before Li diffusion nor in Cu-Li-diffused samples after annealing. As the level is not observed in starting materials or solely Li-diffused samples we suggest that it is related to a Cu-Li complex.
Resumo:
We report fundamental changes of the radiative recombination in a wide range of n-type and p-type GaAs after diffusion with the group-I element Li. These optical properties are found to be a bulk property and closely related to the electrical conductivity of the samples. In the Li-doped samples the radiative recombination is characterized by emissions with excitation-dependent peak positions which shift to lower energies with increasing degree of compensation and concentration of Li. These properties are shown to be in qualitative agreement with fluctuations of the electrostatic potential in strongly compensated systems. For Li-diffusion temperatures above 700-800-degrees-C semi-insulating conditions with electrical resistivity exceeding 10(7) OMEGA cm are obtained for all conducting starting materials. In this heavy Li-doping regime, the simple model of fluctuating potentials is shown to be inadequate for explaining the. experimental observations unless the number of charged impurities is reduced through complexing with Li. For samples doped with low concentrations of Li, on the other hand, the photoluminescence properties are found to be characteristic of impurity-related emissions.
Resumo:
We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.
Resumo:
Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.
Resumo:
The transient current response of a-Si:H in both p/i/n and n/i/n structures has been measured as a function of pulse intermittence and pulse amplitude. The results are consistent with the picture that in p/i/n samples the peculiar current response is caused by the competing contributions of electrons and holes which show themselves in different time scales.
Resumo:
Infrared absorption experiments have been performed on hydrogenated and deuterated bulk boron- and aluminum-doped-Si and implanted P, As, and Sb donors in silicon. A first evidence of complex formation in bulk p-type Si is obtained and the spectra confirm the anomalous 3.3-cm-1 deuterium frequency shift with respect to boron isotopes. The ratio of the D-B-11 and D-B-10 peak areas is found to be the same as that of the two boron isotopes natural abundance. In donor-implanted silicon, a quantitative analysis of the obtained data has allowed a rough estimate of the passivating rate due to diffusing deuterium. While the frequencies of the various vibrational lines are found to be in agreement with those reported in the literature, the data on the broad line at 1660 cm-1 (H) or 1220 cm-1 (D) seem to suggest an assignment of this peak to a complex in the bulk involving some type of defect due to the implantation process.