235 resultados para Maleic Anhydride Grafting
Resumo:
The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.
Resumo:
The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.
Resumo:
A microsecond time-resolved laser fluorescence spectroscopic analysis set was developed, A chelate-cyclic anhydride of diethylenetrimin pentaacetic acid anhydride (DTPAA) was synthesized. An anti-HBs antibody was purified, A EU3+ -DTPAA-anti-HBs label was prepared by two step procedure. We described the optimal condtion with EU3+ as marker and DTPAA as chelate bounding to antibody molecule. Labeling parameters such as solvent pH, protein and chelate molar ratio, reaction time, separation method were discussed in detail.
Resumo:
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
The compatibility and morphology of HIPS/PC and HIPS-g-GMA/PC blends were studied. The compatibility and morphology of HIPS/PC blends were characterized by DSC and SEM, respectively. The result of DSC shows that T-g of PS doesn't change with the blend composition, and T-g of PC decreases with the increase in weight fraction of HIPS, which indicates that the PC/HIPS blend is a partially miscible system. Results of SEM indicate that the decrease in T-g of PC results from PS interpenetrating into the phase of PC, and no change in T-g of PS results from PC not interpenetrating into the phase of PS. The copolymer of HIPS-g-GMA was prepared by reactive grafting method. The IR spectrum shows that GMA is grafted on the chain of HIPS. The compatibility and morphology of HIPS-gGMA (35)/PC (65) were studied by DSC and SEM. PC (65)/HEPS-g-GMA (35) blend exhibits reduced size of disperse phase, enhanced interface adhesion and lower T-g of PC phase as compared with the PC(65)/HIPS(35) blend. It implies that HIPS-g-GMA is an effective compatibilizer of the HIPS/PC blend.
Resumo:
The interface behavior of polyamide 1010 (PA1010) and polypropylene (PP) was studied. In order to improve their interfacial adhesion, functional PP was prepared by means of grafting glycidyl methacrylate (GMA) on PP main chains and used instead of plain PP. Several technological characterizations were performed here on their interfaces. ESCA was used to confirm that some kind of reaction occurred between end groups of PA1010 and epoxy species of PP-g-GMA. The peel test was adopted to measure interfacial adhesion. It was found that the fracture energy of interfaces between PA1010 and PP-g-GMA was dramatically increased with the content of GMA. Their interfaces were observed as being blurred by using SEM and TEM and a crack that could be seen in the case of the interfaces of the PA1010 and the plain PP disappeared.
Resumo:
A dicarboxylic acid, N,N'-hexane-1,6-diylbis(trimellitimide), was prepared by the reaction of trimellitic anhydride with 1,6-hexane diamine. From the diacid, a series of copoly(ester imide)s had been synthesized by thermal condensation with p-hydroxybenzoic acid and diphenols with different structures. Properties of the resulting copoly(ester imide)s were characterized by polarized light microscopy, differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). Most of the copoly(ester imide)s formed a nematic phase over a wide temperature range above their melt. The effects of the copoly(ester imide)s composition and the structures of diphenols on the temperature related to liquid crystalline transition were investigated.
Resumo:
X-ray crystal structures of 2,2',3,3'-and 3,3',4,4'-biphenyltetracarboxylic dianhydride (2,2',3,3'- and 3,3',4,4'-BPDA) were determined. The dianhydride isomers have different symmetry caused by difference in two anhydride group positions and the dihedral angles between the two phenyl rings are 62.9 degrees for 2,2',3,3',-BPDA and 0 degrees for 3,3',4,4'-BPDA respectively. The polyimides from 2,2',3,3'-BPDA exhibit enhanced solubility, higher thermal stability, and higher glass transition temperature (T-g) compared with those from 3,3',4,4'-BPDA.
Resumo:
A novel poly(vinyl alcohol) grafting 4-vinylpyridine self-gelatinizable copolymer was adapted to immobilize glucose oxidase. The reduction of hydrogen peroxide (H2O2) was detected at a Prussian Blue (PB) modified graphite electrode. A stable and sensitive glucose amperometric biosensor is described. The copolymer is a good biocompatible polymer in which the glucose oxidase retains high activity. Moreover, the copolymer can adhere firmly to the inorganic PB membrane. The sensor showed an apparent Michaelis-Menten constant of 18 +/- 0.2 mM and a maximum current density of 1.14 mu A cm(-2) mM(-1). The linear range is from 5 mu M to 4.5 mM glucose and the detection limit is 0.5. mu M glucose. The catalytic efficiency of PB for the reduction of H2O2 is higher than that for the oxidation of H2O2. Glucose concentrations in serum samples from healthy persons and diabetic patients were determined using the sensor. The results compared well with those provided by the hospital using a spectroscopy method.
Resumo:
Novel poly(amide imide)s (PAI) containing alkyl-substituted cyclohexylidene moieties were synthesized by conventional polycondensation of trimellitic anhydride chloride with novel aromatic diamines followed by chemical imidization using acetic anhydride and pyridine. The inherent viscosities of the resulting PAIs are relatively high and range from 71 to 112 mt g(-1). The prepared PAIs show excellent thermal stability and good solubility. The glass transition temperatures (T-g) measured by DSC are observed in the range of 312-342 degrees C. Furthermore, all the polymers are readily soluble in less hygroscopic organic solvents like cyclohexanone, gamma-butyrolactone as well as aprotic polar solvents.