362 resultados para INP(110)
Resumo:
A high energy shift of the band-band recombination has been observed in the photoluminescence (PL) spectra of the strained InP epilayer on GaAs by metalorganic chemical vapor deposit. The strain determined by PL peak is in good agreement with calculated thermal strain. The surface photovoltalic spectra gives the information about energy gap, lattice mismatching, and composition of heteroepilayers, diffusion length, surface, and interface recombination velocity of minority carriers of heteroepitaxy layers.
Resumo:
The characteristics of the steady-state and the transient response to external light excitation of a common-cavity two-section (CCTS) bistable semiconductor laser is investigated. The results on the relation of light output versus light input, the wavelength match, optical amplification and optical switching are presented. Experimental results are compared to the results of a computer simulation.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
InxGa1-xAs/InP (0.39 less than or equal to x less than or equal to 0.68) strained-layer quantum wells having 20 wells with thickness of 50 Angstrom in a P-i-N configuration were grown by gas source molecular beam epitaxy (GSMBE). High-resolution X-ray diffraction rocking curves show the presence of up to seven orders of sharp and intense satellite reflection, indicative of the structural perfection of the samples. Low-temperature photoluminescence and low-temperature absorption spectra were used to determine the exciton transition energies as a function of strain. Good agreement is achieved between exciton transition energies obtained experimentally at low temperature with those calculated using the deformation potential theory.
Resumo:
High-quality compressively strained In0.63Ga0.37As/InP quantum wells with different well widths (1-11 nm) have been grown coherently on InP substrates using a home-made gas source molecular beam epitaxy (GSMBE) system. The indium composition in the wells of the sample was determined by means of high-resolution X-ray diffraction and its computer simulation. it is found that the exciton transition energies determined by photoluminescence (PL) at 10 K are in good agreement with those calculated using a deformation potential model. Sharp and intense peaks for each well can be well resolved in the 10 K PL spectra. For wells narrower than 4 nm, the line width of the PL peaks are smaller than the theoretical values of the line-width broadening due to 1 hit interface fluctuation, showing that the interface fluctuation of our sample is within 1 ML. For wells of 7 and 9 nm, the PL peak widths are as low as 4.5 meV.
Resumo:
The wafer processing of Indium Phosphide (InP) is so important that it is getting more and more attentions. Lapping is a basic step just following the ingot cutting. In this paper, the influences of various processing parameters on the lapped wafer quality and lapping rate have been checked, the double-crystal X-ray diffraction results about lapped wafers also were presented here. According to the experimental results, the optimum lapping conditions have been obtained.