198 resultados para planar intersect waveguide
Resumo:
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel design of 100GHz-spaced 16channel arrayed-waveguide grating (AWG) based on silica-on-silicon chip is reported.AWG is achieved by adding a Y-branch to the AWG and arranging the input/output channel in a neat row,so the whole configuration can be aligned and packaged using only one fiber-array.This configuration can decrease the device's size,enlarge the minimum radius of curvature,save time on polishing and alignment,and reduce the chip's fabrication cost.
Resumo:
The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.
Resumo:
A new technology for fabrication of silica on silicon arrayed waveguide grating (AWG) based on deep etching and thermal oxidation is presented.Using this method,a silicon layer is remained at the side of waveguide.The stress distribution and effective refractive index of waveguide fabricated by this approach are calculated using finite element and finite difference beam propagation method,respectively.The results of these studies indicate that the stress of silica on silicon optical waveguide can be matched in parallel and vertical direction and AWG polarization dependent wavelength (PDλ) can be reduced effectively due to side-silicon layer.
Resumo:
The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 f^m broad-area laser diodes has been measured, and is 2. 5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1. 7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19 % fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.
Resumo:
A novel self-aligned coupled waveguide (SACW) multi-quantum-well (MQW) distributed Bragg reflector (DBR) laser is proposed and demonstrated for the first time. By selectively removing the MQW layer and leaving the low SCH/SACW layer the Bragg grating is partially formed on this layer. By optimizing the thickness of the low SCH/SACW layer, a ~80% coupling efficiency between the MQW gain region and the passive region are obtained. The typical threshold current of the SACW DBR laser is 39 mA, the slope efficiency can reach to 0.2 mW/mA and the output power is more than 20 mW with a more than 30dB side mode suppression ratio.
Resumo:
The 808nm laser diodes with a broad waveguide are designed and fabricated. The thickness of the Al_(0.35)-Ga_(0.65)As waveguide is increased to 0.9μm. In order to suppress the super modes, the thickness of the Al_(0.55)Ga_(0.45)As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm~(-1). The structures are grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
国家自然科学基金
Resumo:
于2010-11-23批量导入
Resumo:
A 2 x 2 Mach-Zehnder interferometer electrooptical switch integrated in silicon-on-insulator using multimode interference 3-dB couplers as splitter and combiner has been proposed and fabricated. Free carriers plasma dispersion effect was utilized to realize light modulation in silicon. Switching operation was achieved at an injection current of 358mA and which can be much reduced by optimizing the PIN structure and improving fabrication process. Extinction ratio of 7.7dB and crosstalk of 4.8dB has been observed.
Resumo:
The stress distribution in silica optical waveguides on silicon is calculated by using finite element method (FEM). The waveguides are mainly subjected to compressive stress along the x direction and the z direction, and it is accumulated near the interfaces between the core and cladding layers. The shift of central wavelength of silica arrayed waveguide grating (AWG) on silicon-substrate with the designed wavelength and the polarization dependence are caused by the stress in the silica waveguides.