261 resultados para irradiation by microwave
Resumo:
We studied the dependence of photoluminescence induced by carbon contamination on the Ge/GeSi structure. It is found that a carbon and silicon defect complex may be formed in a special structure by opening the in situ high-energy electron diffraction test during growth. There is an important difference in the dependence of photoluminescence on the temperature between the defect complex in our samples and in bulk Si. where the impurity-active center is generated by high-energy electron (about several MeV) irradiation. The quenching temperature of the photoluminescence from the impurity-active center is higher in our Ge/GeSi structure than in bulk Si. The defect complex may serve as an impurity-active center for a possible application in making Si-based light-emitting diodes whose wavelength is around 1.3 mu m in the window of optical communication. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The structural characteristics of gallium nitride (GaN) films grown on sapphire(0001) substrates by gas source molecular beam epitaxy (GSMBE) have been investigated using high-resolution synchrotron irradiation X-ray diffraction and cathodoluminescence with a variable energy electron beam. Besides the well-known GaN hexagonal structure, a small portion of cubic phase GaN was observed. The X-ray measurements provide an essential means for the structural identification of the GaN layers. Arising from the variable penetration depth of the electron beam in the cathodoluminescence measurements, it was found that the fraction of the GaN cubic-phase typically increased as the probing depth was increased. The results suggest that the GaN cubic phase is mostly located near the interface between the substrate and GaN layer due to the initial nucleation.
Resumo:
The measurement and analysis of the microwave frequency response of semiconductor optical amplifiers (SOAs) are proposed in this paper. The response is measured using a vector network analyzer. Then with the direct-subtracting method, which is based on the definition of scattering parameters of optoelectronic devices, the responses of both the optical signal source and the photodetector are eliminated, and the response of only the SOA is extracted. Some characteristics of the responses can be observed: the responses are quasi-highpass; the gain increases with the bias current; and the response becomes more gradient while the bias current is increasing. The multisectional model of an SOA is then used to analyze the response theoretically. By deducing from the carrier rate equation of one section under the steady state and the small-signal state, the expression of the frequency response is obtained. Then by iterating the expression, the response of the whole SOA is simulated. The simulated results are in good agreement with the measured on the three main characteristics, which are also explained by the deduced results. This proves the validity of the theoretical analysis.
Resumo:
Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this report we present the effects of 1 MeV-electron irradiation on i a-Si:H films and solar cells. It is observed that in the dose range of 1.4-8.4 x 10(15) cm(-2) the defect creation has not reached its saturation level and the metastable defects caused by the irradiation cannot be completely removed by a two hour annealing at 200 degrees C for i a-Si:H films or at 130 degrees C for a-Si:H solar cells. The results may be understood in terms of a model based on two kinds of metastable defects created by 1 MeV-electron irradiation.
Resumo:
The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+ irradiation at room temperature and 350-degrees-C has been studied. For irradiations at 350-degrees-C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 x 10(15) Si/cm2 for GaAs, and is 5 x 10(15) Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350-degrees-C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.
Resumo:
The damage removal and strain relaxation in the As+-implanted Si0.57Ge0.43 epilayers were studied by double-crystal x-ray diffractometry and transmission electron microscopy. The results presented in this paper indicate that rapid thermal annealing at temperatures higher than 950 degrees C results in complete removal of irradiation damage accompained by the formation of GeAs precipitates which enhance the removal process of dislocations.
Resumo:
High efficiency AlxGa1-xAs/GaAs heteroface solar cells have been fabricated by an improved multi-wafer squeezing graphite boat liquid phase epitaxy (LPE) technique, which enables simultaneous growth of twenty 2.3 X 2.3cm(2) epilayers in one run. A total area conversion efficiency of 17.33% is exhibited (1sun, AM0, 2.0 x 2.0cm(2)). The shallow junction cell shows more resistance to 1 MeV electron radiation than the deep one. After isochronal or isothermal annealing the density and the number of deep level traps induced by irradiation are reduced effectively for the solar cells with deep junction and bombardment under high electron fluences.
Resumo:
With the principles of microwave circuits and semiconductor device physics, two microwave power device test circuits combined with a test fixture are designed and simulated, whose properties are evaluated by a parameter network analyzer within the frequency range from 3 to 8GHz. The simulation and experimental results verify that the test circuit with a radial stub is better than that without. As an example, a C-band AlGaN/GaN HEMT microwave power device is tested with the designed circuit and fixture. With a 5.4GHz microwave input signal, the maximum gain is 8.75dB, and the maximum output power is 33.2dBm.
Resumo:
Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or -ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or -ray with p53 or GFP).Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM2, and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G1-phase cells in C-beam with p53 increased by 8.2%–16.0%, 5.2%–7.0%, and 5.8%–18.9%, respectively, compared with C-beam only, -ray with p53, or p53 only. The accumulation of G2-phase cells in C-beam with p53 increased by 5.7%–8.9% and 8.8%–14.8%, compared with those in -ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%–19.1%, 5.8%–11.7%, and 5.2%–19.2%, respectively, compared with C-beam only, -ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.
Resumo:
Purpose The aim of this study is to evaluate the eVect of carbon-beam irradiation on adenovirus-mediated p53 transfer in human cervix adenocarcinoma.Materials and methods The HeLa cells pre-exposed to carbon-beam or -ray, were infected with replication-deficient adenovirus recombinant vectors, containing human wild-type p53 (AdCMV-p53) and green Xuorescent protein (GFP) (AdCMV–GFP), respectively. The GFP transfer and p53 expression were detected by Xow cytometric analysis.Results The GFP transfer frequency in C-beam with AdCMV-GFP groups was 38–50% more than that inγ-ray with AdCMV–GFP groups. The percentage of p53 positive cells in the C-beam with AdCMV–p53 groups was 34–55.6% more than that in γ-ray with AdCMV-p53 groups (p < 0.05), suggesting that subclinical-dose C-beam irradiation could signiWcantly promote exogenous p53 transfer and p53 expression, and extend the duration of p53 expression in the HeLa cells. The expression of p21 increased with p53 expression in HeLa cells. The survival fractions for the 0.5–1.0 Gy C-beam with AdCMV-p53 groups were 38–43% less than those for the isodose γ-ray with AdCMV-p53 groups, and 31–40% less than those for the C-beam only groups (p <0.05).Conclusions The subclinical-dose C-beam irradiation could signiWcantly promote the transfer and expression of exogenous p53, extend the duration of p53 expression, and enhance the suppression of p53 on cervix adenocarcinoma cells.