384 resultados para indium nitride
Resumo:
Mn ions have been incorporated into MOCVD grown Al1-x In (x) N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions one has Curie points at similar to 260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T (c) above room temperature is assumed to be associated to the layer having higher Mn concentration.
Resumo:
Tin mono-sulphide (SnS) nanoparticles were synthesized by a facile method. Reactions producing narrow size distribution SnS nanoparticles with the diameter of 5.0-10 nm were carried out in an ethylene glycol solution at 150 degrees C for 24 h. Bulk heterojunction solar cells with the structure of indium tin oxide (ITO)/polyethylenedioxythiophene polystyrenesulphonate (PEDOT PSS)/SnS polymer/Al were fabricated by blending the nanoparticles with a conjugated polymer to form the active layer for the first time. Current density-voltage characterization of the devices showed that due to the addition of SnS nanoparticles to the polymer film, the device performance can be dramatically improved, compared with that of the pristine polymer solar cells. (c) 2009 Published by Elsevier B.V.
Resumo:
In this paper, a mini-staged multi-stacked quantum cascade laser structure with a designed wavelength of 4.7 mu m is presented. By introducing five 0.5 mu m thick high thermal conductivity InP interbuffer layers, the 60-stages active region core of the quantum cascade laser is divided into six equal parts. Based on simulation, this kind of quantum cascade laser with a 10 mu m ridge width gives nearly circular two-dimensional far-field distribution (FWHM = 32.8 degrees x 29 degrees) and good beam quality parameters M-2 = 1.32 x 1.31 in the fast axis (growth direction) and the slow axis (lateral direction). Due to the enhancement of lateral heat extraction through the interbuffer layers, compared to the conventional structure, a decrease of about 5-6% for the maximum temperature in the active region core of the mini-staged multi-stacked quantum cascade laser with indium-surrounded and gold-electroplated packaging profiles is obtained at all possible dissipated electrical power levels.
Resumo:
The authors developed an inductively coupled plasma etching process for the fabrication of hole-type photonic crystals in InP. The etching was performed at 70 degrees C using BCl3/Cl-2 chemistries. A high etch rate of 1.4 mu m/min was obtained for 200 nm diameter holes. The process also yields nearly cylindrical hole shape with a 10.8 aspect ratio and more than 85 degrees straightness of the smooth sidewall. Surface-emitting photonic crystal laser and edge emitting one were demonstrated in the experiments.
Resumo:
In2O3 is a promising partner of InN to form InN/In2O3 heterosystems. The valence band offset (VBO) of wurtzite InN/cubic In2O3 heterojunction is determined by x-ray photoemission spectroscopy. The valence band of In2O3 is found to be 1.47 +/- 0.11 eV below that of InN, and a type-I heterojunction with a conduction band offset (CBO) of 0.49-0.99 eV is found. The accurate determination of the VBO and CBO is important for use of InN/In2O3 based electronic devices.
Resumo:
We have studied the exciton spin dynamics in single InAs quantum dots (QDs) with different exciton fine structural splitting (FSS) by transient luminescence measurements. We have established the correlation between exciton spin relaxation rate and the energy splitting of the FSS when FSS is nonzero and found that the spin relaxation rate in QD increases with a slope of 8.8x10(-4) ns(-1) mu eV(-1). Theoretical analyses based on the phonon-assisted relaxations via the deformation potential give a reasonable interpretation of the experimental results.
Resumo:
Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS nanorods about 100 nm in diameter and 400 nm in length were synthesized via a hydrothermal route in toluene and dimethylsulfoxide solution. By blending the PbS nanorods with the MDMO-PPV as the active layer, bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT PSS)/MDMO-PPV PbS nanorods/Al structure were fabricated in a N-2 filled glove box, Current density-voltage characterization of the devices showed that the solar cells with PbS nanorods hybrid with MDMO-PPV as active layer were better in performance than the devices with the polymer only. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of annealing on the optical properties of InAs/GaAs quantum dots (QDs) grown under different conditions by metalorganic chemical vapor deposition (MOCVD) are studied. A lower QD growth rate leads to an earlier and faster decrease of QD photoluminescence (PL) intensity with increasing annealing temperature. which is proposed to be related to the increased QD two-dimensional (2D)-three-dimensional (3D) transition critical layer thickness at low QD growth rate. High-quality GaAs cap layers grown at high temperature and a low deposition rate are shown to decrease the blueshift of the QDs' emission wavelength significantly during in-situ I h annealing experiments, which is important for the fabrication of long-wavelength InAs/GaAs QD lasers by MOCVD technique. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.
Growth and characterization of GaInNAs by molecular beam epitaxy using a nitrogen irradiation method
Resumo:
We propose an innovative technique, making use of the In segregation effect, referred as the N irradiation method, to enhance In-N bonding and extend the emission wavelength of GaInNAs quantum wells (QWs). After the formation of a complete In floating layer, the growth is interrupted and N irradiation is initiated. The majority of N atoms are forced to bond with In atoms and their incorporation is regulated independently by the N exposure time and the As pressure. The effect of the N exposure time and As pressure on the N incorporation and the optical quality of GaInNAs QWs were investigated. Anomalous photoluminescence (PL) wavelength red shifts after rapid thermal annealing (RTA) were observed in the N-irradiated samples, whereas a normal GaInNAs sample revealed a blue shift. This method provides an alternative way to extend the emission wavelength of GaInNAs QWs with decent optical quality. We demonstrate light emission at 1546 nm from an 11-nm-thick QW, using this method and the PL intensity is similar to that of a 7-nm-thick GaInNAs QW grown at a reduced rate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
InGaN/GAN multiple quantum wells grown by metal-organic chemical vapor deposition were irradiated with the electron beam from a low energy accelerator. The electron irradiation induced a redshift by 50 meV in the photoluminescence spectra of the electron-irradiated InGaN/GaN quantum wells, irrespective of the exposure time to the electron beam which ranges from 10 to 1000s. The localization parameter extracted from the temperature-dependent photoluminescence spectra was found to increase in the Irradiated samples. Analysis of the intensity of the longitudinal optical phonon sidebands showed the enhancement of the exciton-phonon coupling, indicating that the excitons are more strongly localized in the irradiated InGaN wells. The change in the pholotuminescence spectra. In the irradiated InGa/GAN quantum wells were explained in terms of the increase of indium concentration in indium rich clusters induced by the electron irradiation (C) 2009 The Japan Society of Applied Physics
Resumo:
Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.
Resumo:
Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.
Resumo:
The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.
Resumo:
The effect of beta particles interaction on the optical properties of MOCVD grown GaN is reported. A significant change in luminescence properties of GaN is observed after exposing the material with 0.6 MeV beta particles with low dose of 10(12) cm(-2). The results obtained from photoluminescence measurements of irradiated GaN samples in low dose are found contradictory to those reported in literature for samples irradiated with heavy dose (> 10(15) cm(-2)) of electron. An increase in intensity of yellow luminescence has been observed with increasing dose of beta particles which is in disagreement to the already reported results in literature for heavily irradiated samples. A model has been proposed to sort out this inconsistency. The increase in YL intensity at low dose is attributed to the increase in concentration of VGaON complex whereas production of non-radiative VGaON clusters is assumed to justify the decrease in YL intensity at high dose.