345 resultados para Semiconductors nanocomposite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a room temperature study of the direct band gap photoluminescence of tensile-strained Ge/Si0.13Ge0.87 multiple quantum wells grown on Si-based germanium virtual substrates by ultrahigh vacuum chemical vapor deposition. Blueshifts of the luminescence peak energy from the Ge quantum wells in comparison with the Ge virtual substrate are in good agreement with the theoretical prediction when we attribute the luminescence from the quantum well to the c Gamma 1-HH1 direct band transition. The reduction in direct band gap in the tensile strained Ge epilayer and the quantum confinement effect in the Ge/Si0.13Ge0.87 quantum wells are directly demonstrated by room temperature photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InGaN/GAN multiple quantum wells grown by metal-organic chemical vapor deposition were irradiated with the electron beam from a low energy accelerator. The electron irradiation induced a redshift by 50 meV in the photoluminescence spectra of the electron-irradiated InGaN/GaN quantum wells, irrespective of the exposure time to the electron beam which ranges from 10 to 1000s. The localization parameter extracted from the temperature-dependent photoluminescence spectra was found to increase in the Irradiated samples. Analysis of the intensity of the longitudinal optical phonon sidebands showed the enhancement of the exciton-phonon coupling, indicating that the excitons are more strongly localized in the irradiated InGaN wells. The change in the pholotuminescence spectra. In the irradiated InGa/GAN quantum wells were explained in terms of the increase of indium concentration in indium rich clusters induced by the electron irradiation (C) 2009 The Japan Society of Applied Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles electronic structure calculations we find that the titanium vacancy and divacancy may be responsible for the unexpected ferromagnetism in undoped anatase TiO2. An isolated titanium vacancy produces a magnetic moment of 3.5 mu(B), and an isolated titanium divacancy produces a magnetic moment of 2.0 mu(B). The origin of the collective magnetic moments is the holes introduced by the titanium vacancy or divacancy in the narrow nonbonding oxygen 2p(pi) band. At the center of the divacancy, an O-2 dimer forms during the relaxation, which lowers the total energy of the system and leads to the decrease in the total magnetic moment due to a hole compensation mechanism. For both the two native defects, the ferromagnetic state is more stable than the antiferromagnetic state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CaCu3Ti(4-x)Nb(x)O(12) (x = 0, 0.01, 0.08, 0.2) ceramics were fabricated by a conventional solid-state reaction method. The ceramics showed the body-centered cubic structure without any foreign phases and the grain size decreases with Nb doping. Two Debye-type relaxations were observed for the Nb-doped samples at low frequency and high frequency, respectively. The complex electric modulus analysis revealed that the surface layer, grains and grain boundaries contributed to the dielectric constant. The low-frequency dielectric constant relative to the surface layer decreased to a minimum and then increased with the dc bias voltage at 100 Hz, which were well explained in terms of a model containing two metal oxide semiconductors in series, confirming the surface layer in the ceramics. The shift voltage V-B corresponding to the minimal capacitance increased with increase of the composition x. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory of scattering by charged dislocation lines in a quasitriangle potential well of AlxGa1-xN/GaN heterostructures is developed. The dependence of mobility on carrier sheet density and dislocation density is obtained. The results are compared with those obtained from a perfect two-dimensional electron gas and the reason for discrepancy is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have fabricated a set of samples of zincblende Mn-rich Mn(Ga)As clusters embedded in GaAs matrices by annealing (Ga,Mn)As films with different nominal Mn content at 650 degrees C. For the samples with Mn content no more than 4.5%, the Curie temperature reaches nearly 360 K. However, when Mn content is higher than 5.4%, the samples exhibit a spin-glass-like behavior. We suggest that these different magnetic properties are caused by the competing result of dipolar and Ruderman-Kittel-Kasuya-Yosida interaction among clusters. The low-temperature spin dynamic behavior, especially the relaxation effect, shows the extreme creeping effect which is reflected by the time constant tau of similar to 10(11) s at 10 K. We explain this phenomenon by the hierarchical model based on the mean-field approach. We also explain the memory effect by the relationship between the correlation function and the susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directional coupler can be constructed by putting multiple photonic crystal waveguides together. The propagation of the optical field entering this system symmetrically was analysed numerically according to self-imaging principle. On the basis of this structure, ultracompact multiway beam splitter was designed and the ones with three and four output channels were discussed in details as examples. By simply tuning the effective refractive index of two dielectric rods in the coupler symmetrically to induce the redistribution of the power of the optical field, uniform or free splitting can be achieved. Compared with the reported results, this way is simpler, more feasible and more efficient and has extensive practical value in future photonic integrated circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MgO is a promising gate dielectric and surface passivation film for GaN/AlGaN transistors, but little is known of the band offsets in the MgO/AlN system. X-ray photoelectron spectroscopy was used to measure the energy discontinuity in the valence band (Delta E-v) of MgO/AlN heterostructures. A value of Delta E-v=0.22 +/- 0.08 eV was obtained. Given the experimental band gap of 7.83 eV for MgO, a type-I heterojunction with a conduction band offset of similar to 1.45 eV is found. The accurate determination of the valence and conduction band offsets is important for use of III-N alloys based electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high-temperature ferromagnetism in good samples. Motivated by these experimental advances, we use a full-potential density-functional-theory method and supercell approach to investigate N defects and their effects on ferromagnetism of (Al,Cr)N with N vacancies (V-N). We investigate the structural and electronic properties of V-N, single Cr atom, Cr-Cr atom pairs, Cr-V-N pairs, and so on. In each case, the most stable structure is obtained by comparing different atomic configurations optimized in terms of the total energy and the force on every atom, and then it is used to calculate the defect formation energy and study the electronic structures. Our total-energy calculations show that the nearest substitutional Cr-Cr pair with the two spins in parallel is the most favorable and the nearest Cr-V-N pair makes a stable complex. Our formation energies indicate that V-N regions can be formed spontaneously under N-poor condition because the minimal V-N formation energy equals -0.23 eV or Cr-doped regions with high enough concentrations can be formed under N-rich condition because the Cr formation energy equals 0.04 eV, and hence real Cr-doped AlN samples are formed by forming some Cr-doped regions and separated V-N regions and through subsequent atomic relaxation during annealing. Both of the single Cr atom and the N vacancy create filled electronic states in the semiconductor gap of AlN. N vacancies enhance the ferromagnetism by adding mu(B) to the Cr moment each but reduce the ferromagnetic exchange constants between the spins in the nearest Cr-Cr pairs. These calculated results are in agreement with experimental observations and facts of real Cr-doped AlN samples and their synthesis. Our first-principles results are useful to elucidate the mechanism for the ferromagnetism and to explore high-performance Cr-doped AlN diluted magnetic semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonpolar GaN Mn films have been fabricated by implanting Mn-ion into nonpolar a-plane (MO) GaN films at room temperature. The influence of implantation energy on the Structural, morphological and magnetic characteristics of samples have been investigated by means of stopping and range of ions in matter (SRIM) Simulation software, high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). According to the SQUID analysis, obvious room temperature ferromagnetic properties of samples were detected. Moreover, the implantation energy has little impact on the ferromagnetic properties of samples. The XRD and AFM analyses show that the structural and morphological characteristics of samples were severely deteriorated with the increase of implantation energy. (C) 2008 Elsevier B.V. All rights reserved.