236 resultados para Atomic collisions
PROBING THE SYMMETRY ENERGY AT SUPRA-SATURATION DENSITIES FROM PION EMISSION IN HEAVY-ION COLLISIONS
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska and SIII, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2.
Resumo:
The process of multielectron transfer from a Na-4 cluster induced by highly charged C6+, C4+, C2+ and C+ ions is studied using the method of time-dependent density functional theory within the local density approximation combined with the use of pseudopotential. The evolution of dipole moment changes and emitted electrons in Na-4 isobtained and the time-dependent probabilities with various charges are deduced. It is shown that the Na-4 cluster is strongly ionized by C6+ and that the number of emitted electrons per atom of Na-4 is larger than that of Na-2 under the same condition. One can find that the detailed information of the emitted electrons from Na-4 is different from the same from Na-2, which is possibly related to the difference in structure between the two clusters.
Resumo:
A series of Pt/Mg-Al-O catalysts with different Mg/Al atomic ratios were prepared. The NOx storage capacities of these catalysts were measured by isothermal storage at 350 degreesC. It was found that the NOx storage capacity increased with increasing Mg/Al atomic ratios. The catalytic behaviors of Pt/Mg-Al-O and Pt/MgO were studied with storage-reduction cycles at 400 degreesC. Under oxidizing conditions, NOx concentration in the outlet gas gradually increased with time, which indicated the catalysts could store NOx effectively. After a switch from oxidizing conditions to reducing conditions, NOx desorption peak emerged immediately due to the incomplete reduction of stored NOx, which lowered the total NOx conversion. With increasing Mg/Al atomic ratio in the catalysts, NOx conversion increases. Pt/MgO has the highest NOx conversion because of its best activity in the reduction of NOx by C3H6. It seems that with an increasing amount of MgO in the catalysts, the self-poisoning of Pt-sites by adsorbed species during the reaction of NOx with C3H6 may be inhibited effectively.
Resumo:
The dependence of electron conduction of oligo(1,4-phenylene ethynylene)s (OPEs) on length, terminal group, and main chain structure was examined by conductive probe-atomic force microscopy (CP-AFM) via a metal substrate-molecular wire monolayer-conductive probe junction. The electron transport in the molecular junction was a highest occupied molecule orbital (HOMO)-mediated process following a coherent, non-resonant tunneling mechanism represented by the Simmons equation.
Resumo:
The assembly and disassembly of RecA-DNA nucleoprotein filaments on double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) are important steps for homologous recombination and DNA repair. The assembly and disassembly of the nucleoprotein filaments are sensitive to the reaction conditions. In this work, we investigated different morphologies of the formed nucleoprotein filaments at low temperature under different solution conditions by atomic force microscopy (AFM). We found that low temperature and long keeping time could induce the incomplete disassembly of the formed nucleoprotein filaments.
Resumo:
We report a simple method for the label-free detection of double-stranded DNA using surface-enhanced Raman scattering (SERS). We prepared cetyltrimethylammonium bromide (CTAB)-capped silver nanoparticles and a DNA-nanoparticle complex by adding silver nanoparticles to lambda-DNA solutions. In the present study, the utilization of CTAB-capped silver nanoparticles facilitates the electrostatic interaction between DNA molecules and silver nanoparticles; at the same time, the introduction of DNA avoids adding aggregating agent for the formation of nanoparticle aggregates to obtain large enhancement of DNA, because the DNA acts as both the probe molecules and aggregating agent of Ag nanoparticles.
Resumo:
Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.
Resumo:
In the present work, atomic force microscopy (AFM) has been used to study the assembly of protein lysozyme on DNA molecule. Based on the electrostatic interaction, the positively charged lysozyme can easily bind onto the negatively charged DNA molecule surface. The protein molecules appear as globular objects on the DNA scaffold, which are distinguishable in the AFM images. At the same time, lysozyme molecules can be assembled onto DNA as dense or sporadic pattern by varying the protein concentration. This work may provide fundamental aspects for building protein nanostructures and studying of DNA-protein interaction.
Resumo:
A circular bacterial artificial chromosome of 148.9 kbp on human chromosome 3 has been extended and fixed on bare mica substrates using a developed fluid capillary flow method in evaporating liquid drops. Extended circular DNA molecules were imaged with an atomic force microscope (AFM) under ambient conditions. The measured total lengths of the whole DNA molecules were in agreement with sequencing analysis data with an error range of +/-3.6%. This work is important groundwork for probing single nucleotide polymorphisms in the human genome, mapping genomic DNA, manipulating biomolecular nanotechnology, and studying the interaction of DNA-protein complexes investigated by AFM.
Resumo:
The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.
Resumo:
We have fabricated DNA network structures on glass and sapphire substrates. As a comparison, we also formed the network structure on mica substrate. For titanate strontium substrate, however, DNA network can not be obtained even if it is wet-treated by Na2HPO4 solution to make it hydrophilic. We also discuss the factors that affect the DNA networks formed on various substrates.
Resumo:
2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxdiazole (PBD) is a good electron-transporting material and can form single crystals from solution. In this work, solution cast PBD single crystals with different crystallographic axes (b, c) perpendicular to the Au/S substrates in large area are achieved by controlling the rate of solvent evaporation in the presence and absence of external electrostatic field, respectively. The orientation of these single crystals on Au/S substrate was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting probe atomic force microscopy (CP-AFM) was used to measure the charge transport characteristics of PBD single crystals grown on Au/S substrates. Transport was measured perpendicular to the substrate between the CP-AFM tip and the Au/S substrate. The electron mobility of 3 x 10(-3) cm(2)/(V s) for PBD single crystal along crystallographic b-axis is determined. And the electron mobility of PBD single crystal along the c-axis is about 2 orders of magnitude higher than that along the b-axis due to the anisotropic charge transport at the low voltage region.
Resumo:
The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.