274 resultados para stimulated Raman scatting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation efect in three carbon allotropes C60, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Raman spectroscopy technique. The diferences on irradiation sensitivity and structural stability for C60, HOPG and diamond are compared. The analysis results indicate that C60 is the most sensitive for B ions irradiation,diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections ? of C60, diamond and HOPG deduced from the Raman spectra are 7.78×10−15 , 6.38×10−15 and1.31 × 10−15cm2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用能量为1.23GeV的快Fe离子辐照了多层堆叠的C60薄膜。用Raman散射技术分析了快Fe离子在C60薄膜中由强电子激发引起的效应,主要包括辐照引起C60分子的聚合及其高温、高压相(HTHP)的形成,和在髙电子能损下C60晶体点阵位置上的C60分子向非晶碳的转变。由此演绎出了快Fe离子在C60薄膜中的损伤截面或潜径迹截面σ和潜径迹的半径Re,及其随沉积在电子系统中的能量密度的变化而变化的规律。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5x10(11) ions/cm(2) but becoming dominant when increasing the fluence to 8x10(12) ions/cm(2). Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Gruneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were implanted at room temperature with 80 keV N+ or 400 keV Xe+ ions. The implantation fluences of N+ and Xe+ ranged from 5.0 x 10(14) to 1.0 x 10(17)/cm(2), and from 2.0 x 10(14) to 5.0 x 10(15)/cm(2), respectively. The samples were analyzed using Raman spectroscopy and the Raman scattering modes of the N- and Xe-ion implanted samples varying with implantation fluences were investigated. It was found that Raman peaks (bands) at 130 and 578 cm(-1) appeared in the spectra of ion-implanted ZnO samples, which are independent of the ion species, whereas a new peak at 274 cm(-1) was found only in N-ion implanted samples, and Raman band at 470 cm(-1) was found clearly in Xe-ion implanted samples. The relative intensity (peak area) increased with the increasing of the implantation fluences. From the comparison of the Raman spectra of N- and Xe-ion implanted ZnO samples and considering the damage induced by the ions, we analyzed the origin of the observed new Raman peaks (bands) and discussed the structure changes of ZnO films induced by N- and Xe-ion implantations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

室温下,用80keVN+和400keVXe+离子注入ZnO薄膜,注入剂量分别为5.0×1014—1.0×1017/cm2和2.0×1014—5.0×1015/cm2.利用拉曼散射技术对注入前后的ZnO薄膜进行光谱测量和分析,研究了样品的拉曼光谱随离子注入剂量的变化规律.实验结果发现,未进行离子注入的样品在99,435cm-1处出现两个ZnO六方纤锌相的特征峰E2low和E2high;N+和Xe+注入样品在130和578cm-1附近均出现新峰(包),N+注入样品还在274cm-1出现新峰,而Xe+注入样品在470cm-1附近出现另一新峰包,且这些新峰(包)的相对面积随注入剂量的增大而增大.通过N+和Xe+注入样品拉曼光谱的对比分析,并考虑到注入离子在样品中产生的原子位移损伤,对新峰(包)对应的振动模来源进行了分析,探索了离子注入在ZnO薄膜中引起的结构变化.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolated transition metal ions/oxides in molecular sieves and on surfaces are a class of active sites for selective oxidation of hydrocarbons. Identifying the active sites and their coordination structure is vital to understanding their essential role played in catalysis and designing and synthesizing more active and selective catalysts. The isolated transition metal ions in the framework of molecular sieves (e.g., TS-1, Fe-ZSM-5, and V-MCM-41) or on the surface of oxides (e.g., MoO3/Al2O3 and TiO2/SiO2) were successfully identified by UV resonance Raman spectroscopy. The charge transfer transitions between the transition metal ions and the oxygen anions are excited by a UV laser and consequently the UV resonance Raman effect greatly enhances the Raman signals of the isolated transition metal ions. The local coordination of these ions in the rigid framework of molecular sieves or in the relatively flexible structure on the surface can also be differentiated by the shifts of the resonance Raman bands. The relative concentration of the isolated transition metal ion/oxides could be estimated by the intensity ratio of Raman bands. This study demonstrates that the UV resonance Raman spectroscopy is a general technique that can be widely applied to the in-situ characterization of catalyst synthesis and catalytic reactions. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase evolution of yttrium oxide and lanthanum oxide doped zirconia (Y2O3-ZrO2 and La2O3-ZrO2, respectively) from their tetragonal to monoclinic phase has been studied using UV Raman spectroscopy, visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD mainly give the bulk information. For Y2O3-ZrO2 and La2O3-ZrO2, the transformation of the bulk phase from the tetragonal to the monoclinic is significantly retarded by the presence of yttrium oxide and lanthanum oxide. However, the tetragonal phase in the surface region is difficult to stabilize, particularly when the stabilizer's content is low. The phase in the surface region can be more effectively stabilized by lanthanum oxide than yttrium oxide even though zirconia seemed to provide more enrichment in the surface region of the La2O3-ZrO2 sample than the Y2O3-ZrO2 sample, based on XPS analysis. The surface structural tension and the enrichment of the ZrO2, component in the surface region of ZrO2-Y2O3 and ZrO2-La2O3 might be the reasons for the striking difference between the phase change in the surface region and the bulk. Accordingly, the stabilized tetragonal surface region can significantly prevent the phase transition from developing into the bulk when the stabilizer's content is high.