223 resultados para ionic liq emulsion oil sepn
Resumo:
As a kind of novel green solvent, Room Temperature Ionic Liquids (RTILs) have been paid ever-increasing attentions in RTIL-based extraction for metal separation, since they have many unique proper-ties, such as non-volatile and non-flammable. The progress of that is mainly composed of the partition properties, mechanisms, defects, overcome methods and forecasts of the processes on the environmental analytical chemistry, has been reviewed.
Resumo:
Nano-hydroxyapatite (HA)/poly(L-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 mu m were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM).
Resumo:
As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.
Resumo:
In this work, a polyelectrolyte-functionalized ionic liquid (PFIL) was firstly incorporated into a sol-gel organic-inorganic hybrid material (PFIL/sol-gel). This new composite material was used to immobilize glucose oxidase on a glassy carbon electrode. An enhanced current response towards glucose was obtained, relative to a control case without PFIL. In addition, chronoamperometry showed that electroactive mediators diffused at a rate 10 times higher in the apparent diffusion coefficient in PFIL-containing matrices. These findings suggest a potential application in bioelectroanalytical chemistry.
Resumo:
For their biocompatibility and potential bionanoelectronic applications, integration of carbon nanotubes (CNTs) with biomolecules such as redox enzyme is highly anticipated. Therein, CNTs are expected to act not only as an electron transfer promoter, but also as immobilizing substrate for biomolecules. In this report, a novel method for immobilization of biomolecules on CNTs was proposed based on ionic interaction, which is of universality and widespread use in biological system. As illustrated, glucose oxidase (GOD) and single-walled carbon nanotubes (SWNTs) were integrated into a unitary bionanocomposite by means of ionic liquid-like unit on functionalized SWNTs. The resulted bionanocomposite illustrated better redox response of immobilized GOD in comparison of that prepared by weak physical absorption without ionic interaction. As a potential application of concept, the electrochemical detection of glucose was exemplified based on this novel bionanocomposite.
Resumo:
A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 mu M, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors.
Resumo:
Conducting polyamline with electrical conductivity of 2.34 x 10(-1) S cm(-1) was obtained using ferrocenesulfonic acid as dopant. After the ferrocenesulfonic acid was oxidized with FeCl3, though the electrical conductivity of the doped polyaniline decreased by 1-2 orders of magnitude, the magnetic susceptibility (chi) increased with the increase of the oxidation degree of ferrocenesulfonic acid. EPR spectra showed not only a signal with a g value of around 2, but also a so-called half-field signal with a g value of about 4 even at room temperature. Coexistence of ferromagnetic intrachain interactions and antiferromagnetic interchain interactions in the materials has been suggested.
Resumo:
Room-temperature ionic liquids (RTILs) are liquids at room temperature and represent a new class of nonaqueous but polar solvents with high ionic conductivity. The conductivity property of carbon nanotubes/RTILs and carbon microbeads/RTILs composite materials has been studied using ac impedance technology. Enzyme coated by RTILs-modified gold and glassy carbon electrodes allow efficient electron transfer between the electrode and the protein and also catalyze the reduction Of O-2 and H2O2,
Resumo:
In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.
Resumo:
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.
Resumo:
The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim = 1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.